Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a, Gọi d=ƯCLN(2n+1;4n+3)
\(\Rightarrow2n+1⋮d;4n+3⋮d\\ \Rightarrow2\left(2n+1\right)-4n-3⋮d\\ \Rightarrow1⋮d\Rightarrow d=1\)
Vậy ƯCLN(2n+1;4n+3)=1 hay ta đc đpcm
b, Gọi d=ƯCLN(3n+5;5n+8)
\(\Rightarrow3n+5⋮d;5n+8⋮d\\ \Rightarrow5\left(3n+5\right)-3\left(5n+8\right)⋮d\\ \Rightarrow1⋮d\Rightarrow d=1\)
Vậy ƯCLN(3n+5;5n+8)=1 hay ta đc đpcm
Gọi b là ước nguyên tố của \(\frac{2n-1}{3n+2}\)
\(2n-1 \vdots b\)
\(3n+2 \vdots b\)
\(=> 6n - 3 \vdots b\)
\(=> 6n + 4 \vdots b\)
\(=> (6n+4) -(6n-3) \vdots b = 6n - 4 - 6n-3 = 7 \vdots b\)
\(b\) là nguyên tố nên \(b=7\)
Ta có : \(3n + 2\vdots 7 => (3n+2-14) \vdots 7 => (3n - 12)\vdots 7 = (3n - 3.4)\vdots 7 = 3(n-4) \vdots 7\)
\(=> n-4 \vdots 7\)
\(=> n-4 = 7k => n = 7k + 4\)
Vậy để a là phân số tối giản \(n = 7k + 4\)
Chắc olm lỗi nên có 1 phần bị khuất mình viết lại vào nhé
Ta có :
2n - 1 chia hết cho b
3n + 2 chia hết cho b
=> 6n - 3 chia hết cho b
=> 6n + 4 chia hết cho b
=> 6n + 4 - (6n - 3) = 6n + 4 - 6n + 3 = 7 chia hết cho b
Vì b là nguyên tố nên b = 7
Ta có :
3n + 2 chia hết cho 7 => 3n + 2 - 14 = 3n - 12 chia hết cho 7 ( hai số chia hết cho 7 thì hiệu chúng chia hết cho 7)
3n - 12 = 3n - 3.4 = 3.(n-4) chia hết cho 7 ( tính chất phân phối của phép nhân)
=> n - 4 chia hết cho 7
=> n - 4 = 7.k
n = 7k + 4
Vậy để a là phân số tối giản thì n = 7k + 4
Để n \(\in N\)
ta có \(3n⋮5-2n\)
\(\Rightarrow2.3n⋮5-2n\)
hay \(6n⋮5-2n\)
Có thể là : \(5-2n⋮5-2n\)
hay \(15-6n⋮5-2n\)
\(\Rightarrow3.x\left(5-2n\right)⋮5-2n\)
hoặc\(15-6n⋮5-2n\)
Từ các trường hợp trên
\(5-2n\inƯ\left(15\right)=\left\{\mp1;\mp3;\mp5;\mp15\right\}\)
Ta lập bảng để xét các trường hợp trên
5-2n | -1 | 1 | -3 | 3 | -5 | 5 | -15 | 15 |
2n | 4 | 6 | 2 | 8 | 0 | 10 | -10 | 20 |
n | 2 | 3 | 1 | 4 | 0 | 5 | -5 | 10 |
Rắc rối quá có gì sai ở chỗ 2n thì nói mk nhé ^^
a) A = 21 + 22 + 23 + .................. + 260
A = (21 + 22 + 23) + (24 + 25 + 26) + ................. + (258 + 259 + 260)
A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ...................... + 258.(1 + 2 + 4)
A = 2.7 + 24 . 7 + ................. + 258.7
A = 7.(2 + 24 + ........ + 258)
. A= (2 +22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260).
= 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).
= 2 x 7 + 24 x 7 + ... + 258 x 7.
= 7 x ( 2 + 24 + ... + 258).
Vì A = 7 x ( 2 + 24 + ... + 258) nên A chia hết cho 7.
b )
Ta có 10 <= n <= 99 nên 21 <= 2n + 1 <= 199
Tìm số chính phương lẻ trong khoảng trên ta được 2n + 1 bằng 25; 49; 81; 121; 169 tương ứng với số n bằng 12; 24; 40; 60; 84
Số 3n + 1 bằng 37; 73; 121; 181; 253. Chỉ có 121 là số chính phương. Vậy n = 40
hơi dài đấy 3
a,
2n+1\(⋮\)2n-3
2n-3+4\(⋮\)2n-3
\(_{\Rightarrow}\)4\(⋮\)2n-3
2n-3\(\in\)Ư(4)=(1;4;2;-1;-4;-2)
2n-3 | 1 | 2 | 4 | -1 | -2 | -4 |
2n | 4 | 5 | 7 | 2 | 1 | -1 |
n | 2 | 1 |
vậy n\(\in\)(2;1)
b;
3n+2\(⋮\)3n-4
3n-4+6\(⋮\)3n-4
=>6\(⋮\)3n-4
3n-4\(\in\)Ư(6)=(1;2;3;6;-1;-2;-3;-6)
3n-4 | 1 | 2 | 3 | 6 | -1 | -2 | -3 | -6 |
3n | 5 | 6 | 7 | 10 | 3 | 2 | 1 | -2 |
n | 3 | 5 | 1 | -1 |
vậy n\(\in\)(3;5;-1;1)
từ đề bài suy ra 10<=n<=99,suy ra 21<=2n+1<=199
. vì 2n+1 là số lẻ nên có các giá trị là 25,49,81,121,169 tương ứng n có các giá trị 12,24,40,60,80
mà 3n+1 có các giá trị 37,73,121,181,253,nên chỉ có 121 là chung
suy ra:n=40
Ta có 10 <= n <= 99 nên 21 <= 2n + 1 <= 199
Tìm số chính phương lẻ trong khoảng trên ta được 2n + 1 bằng 25; 49; 81; 121; 169 tương ứng với số n bằng 12; 24; 40; 60; 84
Số 3n + 1 bằng 37; 73; 121; 181; 253. Chỉ có 121 là số chính phương. Vậy n = 40
ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)
=> (4n+7)- (4n+2) chia hết cho 2n+1
=> 4n+7-4n-2 chia hết cho 2n+1
=> 5 chia hết cho 2n+1
vậy 2n+1 thuộc ước của 5
=> 2n+1 = { 1,5,-1,-5}
=> 2n={ 0,4,-2,-6}
=> n={ 0,2,1,-3}
ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)
Gọi UCLN(2n + 3,3n + 4) là d
Ta có: 2n + 3 chia hết cho d => 3(2n + 3) chia hết cho d => 6n + 9 chia hết cho d
3n + 4 chia hết cho d => 2(3n + 4) chia hết cho d => 6n + 8 chia hết cho d
=> 6n + 9 - (6n + 8) chia hết cho d
=> 6n + 9 - 6n - 8 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> UCLN(2n + 3,3n + 4) = 1
Gọi d là ƯCLN (2n + 3 ; 3n + 4)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}}}\)
\(\Rightarrow6n+9-\left(6n+8\right)⋮d\)
\(6n+9-6n-8⋮d\)
\(1\) \(⋮d\)
\(\Rightarrow d=1\)
Vậy ƯCLN (2n + 3 ; 3n + 4) = 1
10 ≤ n ≤ 99
<=> 21 ≤ 2n+1 ≤ 201
2n+1 là số chính phương lẻ nên 2n+1∈ {25;49;81;121;169}
<=> n ∈{12;24;40;60;84}
<=> 3n+1∈{37;73;121;181;253}
<=> n=40
ta có :
\(\hept{\begin{cases}4^{15}.9^{15}=36^{15}=6^{30}\\18^{16}.2^{16}=36^{16}=6^{32}\end{cases}}\) mà \(2^n.3^n=6^n\Rightarrow30< n< 32\Rightarrow n=31\)