Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I là giao điểm của BD và CE
=>I là trọng tam của tam giác ABC
=>\(CI=\frac{2}{3}CE;BI=\frac{2}{3}BD\)
=>\(CE=\frac{3}{2}CI;BD=\frac{3}{2}BI\)
Suy ra: \(BD+CE=\frac{3}{2}BI+\frac{3}{2}CI=\frac{3}{2}\left(BI+CI\right)\)(1)
Kẻ IH vuông góc với BC
Ta thấy trong tam giác vuông cạnh huyền là cạnh dài nhất
Suy ra: CI>CH ; BI>BH
=>BI+CI>CH+BH=BC(2)
Từ (1) và (2) suy ra: \(BD+CE>\frac{3}{2}BC\)
Tham khảo:
Gọi I là giao điểm của CE và BD.
Theo t/c của đường trung tuyến, ta có:
CI/CE = 2/3
hay CI/12 = 2/3
<=> CI = 2/3.12
<=> CI = 8 cm
Tương tự, ta có:
BI/BD = 2/3
hay BI/9 = 2/3
<=> BI = 2/3.9
<=> BI = 6 cm
t.g BIC vuông tại I nên:
BC^2 = IC^2 + BI^2
<=> BC^2 = 8^2 + 6^2
<=> BC^2 = 100
<=> BC = 10 cm
Gọi giao điểm của hai đường trung tuyến BD và CE là G thì G là trọng tâm tam giác ABC.
Theo tính chất đường trung tuyến của tam giác ta có BG = \(\dfrac{2}{3}\) BD; CG = \(\dfrac{2}{3}\) CE
Mà BD = 9 cm; CE = 12 cm nên BG = \(\dfrac{2}{3}\) . 9 = 6 cm; CG = \(\dfrac{2}{3}\) . 12 cm = 8 cm.
Xét tam giác BGC vuông tại G.
Ta có: BC2 = BG2 + CG2 (định lý Pytago)
=> BC2 = 62 + 82
=> BC2 = 100
=> BC = \(\sqrt{100}\) = 10 cm
Vậy BC = 10 cm.
Gọi giao điểm của BD và CE là G.
\(\Rightarrow\hept{\begin{cases}BD=\frac{3}{2}BG\\CE=\frac{3}{2}CG\end{cases}}\)
\(\Rightarrow BD+CE=\frac{3}{2}\left(BG+CG\right)\)
Xét tam giác BGC có BG + CG > BC ( bất đẳng thức trong tam giác)
\(\Rightarrow BD+CE>\frac{3}{2}BC\)
a) ΔABC có 2 đường trung tuyến BD; CE
G là trọng tâm
=> BG/BD = 2/3
CG/CE = 2/3
b) Trong tam giác BGC ta có: BG + GC > BC
=> 2/3DB + 2/3CE > BC (G là trọng tâm)
=> 2/3(DB + CE) > BC
=> 3/2. 2/3 (DB+CE)> 3/2BC
=> (DB + CE)>3/2BC