Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a 3 b 3 = a 3 3 . b 3 3 = a b 3
Vế trái bằng vế phải nên đẳng thức được chứng minh.
I don't now
mik ko biết
sorry
......................
1. \(2ab\le\frac{\left(a+b\right)^2}{2}\le a^2+b^2\) ( \(\forall a;b\))
2. \(\frac{a}{b}+\frac{b}{a}\ge2\)( \(\forall a;b>0\))
3. \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)\(\left(a;b>0\right)\)
4. \(\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\) \(\left(a;b>0\right)\)
5. \(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)
6. \(a^2+b^2+c^2\ge ab+bc+ca\)
7. \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
8. \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) \(\left(a;b;c>0\right)\)
9. \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)\(\left(x;y>0\right)\)
10. \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) \(\left(x;y;z>0\right)\)
\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow}a=b=c\)
\(\dfrac{a^2+3}{\sqrt{a^2+2}}=\dfrac{a^2+2+1}{\sqrt{a^2+2}}=\sqrt{a^2+2}+\dfrac{1}{\sqrt{a^2+2}}\ge2\cdot\sqrt{\left(\sqrt{a^2+2}\right)\cdot\dfrac{1}{\sqrt{a^2+2}}}=2\)
Bạn tham khảo cách chứng minh tại đây :
Câu hỏi của Nguyễn Huy Thắng - Toán lớp 10 | Học trực tuyến
Áp dụng : Theo BĐT \(AM-GM\) ta có :
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)
Nhân vế theo vế ta được :
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=3.3.1=9\)
Dấu \("="\) xảy ra khi \(a=b=c\)
\(a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow a^4+b^4-a^3b-ab^3\ge0\)
\(\Leftrightarrow\left(a^4-a^3b\right)+\left(b^4-ab^3\right)\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a-b\right)\left(a^2+ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+2.a.\frac{b}{2}+\frac{b^2}{4}+\frac{3b^2}{4}\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left[\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\right]\ge0\text{ luôn đúng với mọi a,b}\)
\(\text{Vậy }a^4+b^4\ge a^3b+3ab^3\text{ với mọi a,b; dấu "=" xảy ra khi x=y}\)