Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC có: A ^ + B ^ + C ^ = 180 ∘
⇒ B ^ = 180 ∘ – A ^ + C ^ = 180 ∘ – ( 80 ∘ + 70 ∘ ) = 30 ∘
Mà tam giác ABC đồng dạng với tam giác DEF nên E ^ = B ^ = 30 ∘
Vậy E ^ = 30 ∘
Đáp án: B
ΔABC và ΔDEF có góc B = D; B A B C = D E D F thì ΔABC đồng dạng với ΔEDF
Đáp án: B
a)xét ΔMEF và ΔEDF ta có
\(\widehat{F}\) chung
\(\widehat{FED}\)=\(\widehat{EMD}\)=90o
->ΔMEF∼ΔEDF(1)
b)xét ΔEMD và ΔEFD ta có
\(\widehat{D}\) chung
\(\widehat{FME}\)=\(\widehat{EFD}\)=90o
->ΔEMD∼ΔEFD(2)
từ (1)và(2)->ΔEMD∼ΔEMF
->\(\dfrac{EM}{MD}\)=\(\dfrac{MF}{EM}\)
=>EM.EM=MD.MF=>EM2=MD.MF
ta có : ΔABC~ΔDEF (gt)
=>\(\dfrac{AB}{DE}=\dfrac{AC}{DF}=\dfrac{BC}{\text{EF}}=k\)
=> DE = 3:2= 1,5 (cm)
DF = 4:2 = 2 (cm)
BC = 5:2 = 2,5 (cm )
=> Chu vi tam giác DEF = DE+DF+BC = 1,5+2+2,5 = 6(CM)
Ta có:
\(\dfrac{AB}{DE}=2;\dfrac{AC}{DF}=2;\dfrac{BC}{EF}=2\)
\(\Leftrightarrow\dfrac{3}{DE}=2;\dfrac{4}{DF}=2;\dfrac{5}{EF}=2\)
\(\Leftrightarrow DE=\dfrac{3}{2};DF=\dfrac{4}{2};EF=\dfrac{5}{2}\)
\(\Rightarrow C_{DEF}=\dfrac{3}{2}+\dfrac{4}{2}+\dfrac{5}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Vì ΔABC đồng dạng với ΔMNP nên A B M N = A C M P = B C N P hay 5 10 = A C 5 = 6 N P
=> AC = 5.5 10 = 2,5; NP = 6.10 5 = 12
Vậy NP = 12cm, AC = 2,5cm
Đáp án: A
ΔABC và ΔDEF có góc B = D; B A B C = D E D F thì ΔABC đồng dạng với ΔEDF
Đáp án: B
Vì tam giác ABC đồng dạng với tam giác DEF nên A ^ = D ^ = 80 ∘ , B ^ = E ^ = 70 ∘ , C ^ = F ^ = 30 ∘
Vậy C ^ = 30 ∘ là đúng
Đáp án: D