Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(0\right)=5=>c=5;f\left(2\right)=4.a+2.b+5=0;f\left(5\right)=25a+5b+5=0\Leftrightarrow5a+b+1=0\)
\(\hept{\begin{cases}4a+2b+5=0\\5a+b+1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4a+2b+5=0\\10a+2b+2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4a+2b+5=0\\6a-3=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=-\frac{7}{2}\\a=\frac{1}{2}\end{cases}}\)
\(f\left(x\right)=\frac{1}{2}x^2-\frac{7}{2}x+5\)
b)
\(f\left(-1\right)=\frac{1}{2}+\frac{7}{2}+5=9=>P\left(-1;3\right)kothuocHS\)
\(f\left(\frac{1}{2}\right)=\frac{1}{2}.\frac{1}{4}-\frac{7}{2}.\frac{1}{2}+5=\frac{\left(1-14+5.8\right)}{8}=\frac{27}{8}=>Qkothuoc\)
c)
\(\frac{1}{2}x^2-\frac{7}{2}x+5=-3\Rightarrow\frac{1}{2}x^2-\frac{7}{2}x+8=0\)
\(x^2-7x+16=0\Leftrightarrow\left(x^2-2.\frac{7}{2}x+\frac{49}{4}\right)+\frac{15}{4}\)vo nghiem
Bài 1 :
Với x = 1 thì y = 4.1 = 4
Ta được \(A\left(1;4\right)\) thuộc đồ thị hàm số y = f(x) = 4x
Đường thẳng OA là đồ thị hàm số y = f(x) = 4x
a) Ta có : \(f\left(2\right)=4\cdot2=8\)
\(f\left(-2\right)=4\cdot\left(-2\right)=-8\)
\(f\left(4\right)=4\cdot4=16\)
\(f\left(0\right)=4\cdot0=0\)
b) +) y = -1 thì \(4x=-1\) => \(x=-\frac{1}{4}\)
+) y = 0 thì 4x = 0 => x = 0
+) y = 2,5 thì 4x = 2,5 => \(4x=\frac{5}{2}\)=> x = \(\frac{5}{8}\)
Bài 2 :
a) Vẽ tương tự như bài 1
b) Thay \(M\left(-2,6\right)\)vào đths y = -3x ta có :
y =(-3)(-2) = 6
=> Điểm M thuộc đths y = -3x
c) Thay tung độ của P là 5 vào đồ thị hàm số y = -3x ta có :
=> 5 = -3x => \(x=-\frac{5}{3}\)
Vậy tọa độ của điểm P là \(P\left(-\frac{5}{3};5\right)\)
a: f(0)=5
=>a*0^2+b*0+c=5
=>c=5
f(1)=1
=>a*1+b*1+1=5
=>a+b=4
f(5)=0
=>25a+5b+1=0
=>25a+5b=-1
mà a+b=4
nên a=-21/20; b=101/20
(P): y=-21/20x^2+101/20x+5
b: f(-1)=-21/20-101/20+5=-11/10<>3
=>D ko thuộc (P)
f(1/2)=-21/20*1/4-101/20*1/2+5=177/80<>9/4
=>E ko thuộc (P)
c: y=-3
=>-21/20x^2+101/20x+8=0
=>x=6,06 hoặc x=-1,26
a: Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot0^2+b\cdot0+c=5\\a+b+c=0\\25a+5b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=5\\a+b=-5\\25a+5b=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=5\\a=1\\b=-6\end{matrix}\right.\)
Vậy: \(f\left(x\right)=x^2-6x+5\)
b: \(f\left(-1\right)=\left(-1\right)^2-6\cdot\left(-1\right)+5=12< >3\)
=>P không thuộc đồ thị
\(f\left(\dfrac{1}{2}\right)=\dfrac{1}{4}-6\cdot\dfrac{1}{2}+5=\dfrac{1}{4}-3+5=\dfrac{1}{4}+2=\dfrac{9}{4}\)
=>Q thuộc đồ thị