Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Hàm số y = ln ( x 2 - 2 x - m + 1 ) có tập xác định là ℝ khi và chỉ khi:
Chọn C
Hàm số y = log 2 ( 4 x - 2 x + m ) có tập xác định là D = ℝ
Đặt Khi đó, bất phương trình (1) trở thành:
Xét hàm số
Ta có: f'(t) = 2t + 1; f'(t) = 0 ⇔ t = 1 2
Bảng biến thiên:
Dựa vào bảng biến thiên, suy ra
Từ (*) suy ra
Chọn D
Hàm số có TXĐ D=R khi và chỉ khi x2- 2mx+ 4 > 0 với mọi x
Suy ra ∆’< 0 hay m2- 4< 0
Do đó; - 2< m< 2
Chọn D
Hàm số xác định với mọi thì luôn đúng với mọi
+) Ta có:
Xét hàm số
Từ bảng biến thiên ta thấy để
Kết hợp điều kiện
Kết luận: có 2019 giá trị của m thỏa mãn bài toán.
Đáp án: D.
y' = 3 x 2 - 6(m - 1)x - 3(m + 1)
y' = 0 ⇔ x 2 - 2(m - 1)x - m - 1 = 0
Δ' = ( m - 1 ) 2 + m + 1 = m 2 - m + 2 ≥ 0
Tam thức m 2 - m + 2 luôn dương với mọi m ∈ R vì δ = 1 - 8 < 0 và a = 1 > 0 cho nên phương y' = 0 luôn có hai nghiệm phân biệt. Suy ra hàm số luôn có cực trị với mọi giá trị m ∈ R.
Đáp án A.
Hàm số xác định trên R