K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 10 2019

Lời giải:

1. $y'=(\sin x)'=\cos x<0$ với mọi $x\in (\frac{\pi}{2}; \frac{3\pi}{2})$ nên hàm nghịch biến trên khoảng đã cho

2. $y'=-\sin x<0$ với mọi $x\in (\frac{\pi}{2}; \pi)$ nên hàm không đồng biến trên khoảng đã cho

3. \(y'=\frac{-1}{\sin ^2x}< 0, \forall x\in (\frac{\pi}{2}; \pi)\cup (\pi; \frac{3\pi}{2})\) nên loại

4. \(y'=\frac{1}{\cos ^2x}>0, \forall x\in (\frac{\pi}{2}; \frac{3\pi}{2})\) nên hàm đồng biến trên khoảng đã cho

Đáp án 4.

10 tháng 7 2018

a. Hàm số y = sinx và y = cosx là hàm số tuần hoàn có chu kì là 2 π.

b. Hàm số y = tanx và y = cotx là các hàm số tuần hoàn có chu kì là π.

9 tháng 5 2022

\(y=sinx\Rightarrow y'=cosx;y''=-sinx;y'''=-cosx\)

Bằng quy nạp toán học ; ta c/m được : \(y^{\left(n\right)}sinx=sin\left(x+n\dfrac{\pi}{2}\right)\)

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

Đáp án D.

25 tháng 10 2021

Cô giải thích sao lại ra D đi ạ

NV
18 tháng 9 2020

36.

\(sin^2x-cos^2x\ne0\Leftrightarrow cos2x\ne0\)

\(\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)

37.

\(cos3x\ne cosx\Leftrightarrow\left\{{}\begin{matrix}3x\ne x+k2\pi\\3x\ne-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne k\pi\\x\ne\frac{k\pi}{2}\end{matrix}\right.\) \(\Leftrightarrow x\ne\frac{k\pi}{2}\)

38.

\(\left\{{}\begin{matrix}x\ge0\\sin\pi x\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\pi x\ne k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne k\end{matrix}\right.\)

39.

\(\left\{{}\begin{matrix}cos\left(x-\frac{\pi}{3}\right)\ne0\\tan\left(x-\frac{\pi}{3}\right)\ne-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-\frac{\pi}{3}\ne\frac{\pi}{2}+k\pi\\x-\frac{\pi}{3}\ne-\frac{\pi}{4}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{5\pi}{6}+k\pi\\x\ne-\frac{\pi}{12}+k\pi\end{matrix}\right.\)

NV
18 tháng 9 2020

33.

\(\left\{{}\begin{matrix}cosx\ne0\\cos\frac{x}{2}\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{\pi}{2}+k\pi\\x\ne\pi+k2\pi\end{matrix}\right.\)

34.

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\\cotx\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sin2x\ne0\\cotx\ne1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\x\ne\frac{\pi}{4}+k\pi\end{matrix}\right.\)

35.

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sinx\ne0\)

\(\Leftrightarrow x\ne k\pi\)

10 tháng 10 2021

C