Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Tổng hai vận tốc là:
36 + 54 = 90 (km/ giờ)
Hai người gặp nhau sau:
180 : 90 = 2 (giờ)
Hai người gặp nhau lúc:
2 giờ + 7 giờ 30 phút = 9giờ 30 phút
Chỗ gặp nhau cách A số km là:
54 x 2 = 108 (km)
Đáp số: a) 9 giờ 30 phút
b) 108 km
HT
Gọi chiều dài quãng đường AB là s (km)
Thời gian xe thứ nhất đi hết quãng đường này là t1 =\(\frac{s}{30}h\)
Thời gian xe thứ hai đi hết quãng đường này là t2 = \(\frac{\frac{s}{3}}{30}\) h+ \(\frac{2s}{\frac{3}{40}}\) h
Xe thứ hai đến sớm hơn xe thứ nhất 5 phút (5 phút =\(\frac{1}{12}h\) ) nên :
t1 - t2 = \(\frac{s}{30}\) - ( \(\frac{s}{\frac{3}{30}}+\frac{2s}{\frac{3}{40}}\)) = \(\frac{1}{12}\) ⇒ s = 15 (km)
Thời gian xe thứ nhất đi hết AB là : t1 = \(\frac{s}{30}h\) = \(\frac{1}{2}h\) = 30 (phút).
Thời gian xe thứ hai đi : t2 = 25 (phút).
Quãng đường xe thứ nhất đi được sau 1h là:
\(S_1=v_1t=30\cdot1=30km\)
Quãng đường xe thứ hai đi được sau 1h là:
\(S_2=v_2t=40\cdot1=40km\)
Hai xe chuyển động cùng chiều, khoảng cách hai xe sau 1h là:
\(\Delta S=S_2-S_1=40-30=10km\)
Giả sử độ dài cả quãng đường AB là \(S=90km\)
Kể cả từ lúc đi và lúc về, tổng quãng đường mà xe đạp và xe máy đi được là 2S.
Gọi vận tốc xe đạp và xe máy lần lượt là \(v_1,v_2\) (km/h)
Thời gian xe đạp đi là:
\(t_1=14h40p-10g=4g40p=\dfrac{14}{3}h\)
Thời gian xe máy đi là:
\(t_2=14h40p-10h30'-40p=\dfrac{7}{2}h\)
Theo bài hai người cùng xuất phát từ A đến B trên S=90km nên: \(\dfrac{14}{3}v_1+\dfrac{7}{2}v_2=90\cdot2=180\left(1\right)\)
Hai xe gặp nhau lúc 14h40p thì \(\dfrac{14}{3}v_1=\dfrac{7}{2}v_2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}v_1=19,29\\v_2=25,71\end{matrix}\right.\)
Tự tóm tắt nha :D
Thời gian xe 1 đến nơi:
\(t_1=\frac{s}{v_1}=\frac{60}{50}=1,2\left(h\right)\)
Thời gian xe 2 đến nơi:
\(t_2=1,2+0,5+0,5-0,7=1,5\left(h\right)\)
Vận tốc xe 2:
\(v_2=\frac{s}{t_2}=\frac{60}{1,5}=40\left(km/h\right)\)
b) Vì xe 2 xuất phát sớm hơn 30' nên
\(t=t_2-0,5=1,5-0,5=1\left(h\right)\)
Vận tốc:
\(v_2'=\frac{s}{t}=\frac{60}{1}=60\left(km/h\right)\)