K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2020

giúp với!!

27 tháng 2 2020

Gọi thời gian vòi thứ nhất và vòi thứ 2 chảy 1 mình đầy bể lần lượt là x; y ( > 0; h )

1 giờ vòi thứ nhất chảy được : \(\frac{1}{x}\)(bể)

1 giờ vòi thứ 2 chảy được : \(\frac{1}{y}\)( bể )

+) Cả hai vòi nước chảy trong 1 h thì được nửa bể

=> Có phương trình: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\)

+) Nếu vòi thứ nhất chảy trong 2 h; vòi thứ 2 chảy trong 1 h thì được 5/6 bể

=> Có phương trình: \(\frac{2}{x}+\frac{1}{y}=\frac{5}{6}\)

Vậy ta có hệ: \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\\\frac{2}{x}+\frac{1}{y}=\frac{5}{6}\end{cases}}\)<=> \(\hept{\begin{cases}\frac{1}{x}=\frac{1}{3}\\\frac{1}{y}=\frac{1}{6}\end{cases}}\)<=> x = 3 và y = 6 ( tmđk)

Vậy ...

25 tháng 4 2018

Giống câu hỏi của mình :))

25 tháng 4 2018

Giống câu hỏi của mình 

gọi thời gian mỗi vòi chảy 1 mk đầy bể lần lượt là x,y (h) (x , y >0 )

2 h vòi 1 chảy đc là 2x ( bể)

2 h vòi 2 chảy đc là 2y (bể)

2 h cả 2 vòi chảy đc là 2x + 2y = 3/5 (bể)                   (1)

3h vòi 1 chảy đc là  3x (bể)

vậy nếu vòi 1 chảy 3h , vòi 2 chảy 2h thì đc 4/5 bể 

\(\Rightarrow\)pt 3x + 2y = 4/5                  (2)

từ 1 và 2 ta đc hpt        \(\hept{\begin{cases}2x+2y=\frac{3}{5}\\3x+2y=\frac{4}{5}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{5}\\y=\frac{1}{10}\end{cases}}\)(tm)

vậy ..................

ko bt đúng ko nữa

#mã mã#

7 tháng 2 2018

Gọi thời gian vòi thứ nhất chảy một mình đầy bể là x ( giờ, x > 6)

      thời gian voi thứ hai chảy một mình đầy bể là y    ( giờ, y > 6)

Suy ra một giờ vòi thứ nhất chảy được \(\frac{1}{x}\)(bể)

           một giờ vòi thứ hai chảy được    \(\frac{1}{y}\)(bể)

*)Cả hai vòi cùng chảy vào một bể không có nước thì sau 6 giờ bể đầy

=> Một giờ cả hai vòi chày được \(\frac{1}{6}\)(bể)

Do đó ta có phương trình: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{6}\)(1)

*)Vòi thứ nhất chảy trong 2 giờ được: \(\frac{2}{x}\)(bể)

Vòi thứ hai chảy trong 3 giờ được: \(\frac{3}{y}\)(bể)

Khi đó hai vòi chày được 1/2 bể nên ta có: \(\frac{2}{x}+\frac{3}{y}=\frac{1}{2}\)(2)

Từ (1) và (2) ta có hệ phương trình:

       \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{6}\\\frac{2}{x}+\frac{3}{y}=\frac{1}{2}\end{cases}}\)

<=>  \(\hept{\begin{cases}\frac{2}{x}+\frac{2}{y}=\frac{1}{3}\\\frac{2}{x}+\frac{3}{y}=\frac{1}{2}\end{cases}}\)

=> \(\frac{1}{y}=\frac{1}{6}\)(sai đề rồi nhé)

29 tháng 4 2023

Gọi thời gian vòi 1 và vòi 2 chảy một mình đầy bể lần lượt là x và y (h) (ĐK: x, y>0�, �>0).

Mỗi giờ vòi 1 chảy được 1x1� bể và vòi 2 chảy được 1y1� bể.

Cả 2 vòi cùng chảy trong 6 giờ thì đầy bể nên mỗi giờ cả hai vòi cùng chảy được 1616 bể, ta có phương trình 1x+1y=16(1)1�+1�=16(1)

Trong 2 giờ vòi 1 chảy được 2x2� bể, trong 3 giờ vòi 2 chảy được 3y3� bể.

Nếu để riêng vòi thứ nhất chảy trong 2 giờ, sau đó đóng lại va mở vòi thứ hai chảy tiếp trong 3 giờ nữa thì được 2525 bể nên ta có phương trình 2x+3y=25(2)2�+3�=25(2)

Từ (1)(1) và (2)(2) ta có hệ 

{1x+1y=162x+3y=25⇔{2x+2y=132x+3y=25⇔{1y=1151x=110⇔{x=10y=15(tm){1�+1�=162�+3�=25⇔{2�+2�=132�+3�=25⇔{1�=1151�=110⇔{�=10�=15(��)

Vậy thời gian vòi 1 và vòi 2 chảy một mình đầy bể lần lượt là 10 giờ và 15 giờ.

 Chọn D

Gọi x(giờ) là thời gian vòi 1 chảy một mình đầy bể

Gọi y(giờ) là thời gian vòi 2 chảy một mình đầy bể

(Điều kiện: x>5; y>5)

Trong 1 giờ, vòi 1 chảy được: \(\dfrac{1}{x}\)(bể)

Trong 1 giờ, vòi 2 chảy được: \(\dfrac{1}{y}\)(bể)

Trong 1 giờ, hai vòi chảy được: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\)(1)

Vì khi vòi thứ nhất chảy trong 3 giờ và vòi thứ 2 chảy trong 2 giờ thì được 12/25 bể nên ta có phương trình:

\(\dfrac{3}{x}+\dfrac{2}{y}=\dfrac{12}{25}\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\\\dfrac{3}{x}+\dfrac{2}{y}=\dfrac{12}{25}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{3}{5}\\\dfrac{3}{x}+\dfrac{2}{y}=\dfrac{12}{25}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{3}{25}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{25}{3}\\\dfrac{1}{x}=\dfrac{3}{5}-\dfrac{3}{25}=\dfrac{12}{25}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{25}{3}\\x=\dfrac{25}{12}\end{matrix}\right.\)(thỏa ĐK)

Vậy: Vòi 1 cần \(\dfrac{25}{12}h\) để chảy một mình đầy bể

Vòi 2 cần \(\dfrac{25}{3}h\) để chảy một mình đầy bể