Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,s=5km\\ t=2h\\ v=\dfrac{s}{t}=\dfrac{5}{2}=2,5\dfrac{km}{h}\\ \Rightarrow A\)
\(v_{xe.máy}=8,\left(8\right)\dfrac{m}{s}\\ v_{xe.đạp}< v_{xe.máy}< v_{tàu.hỏa}\left[3< 8,\left(8\right)< 10\right]\\ \Rightarrow A\)
Thời gian nguười thứ nhất đi trên AB là :
\(t_1=\frac{AB}{v_1}=\frac{AB}{20}\)
Thời gian ngời thứ nhất đi trên BC là:
\(t_1'=\frac{BC}{v_2}=\frac{AB}{2v_1}=\frac{AB}{20}\)
Thời gian nguười thứ nhất đi hết chu vi là:
\(t=2\left(t_1+t_2\right)=\frac{AB}{5}\)
Thời gian ngời thứ hai đi trên AB là:
\(t_2=\frac{AB}{v_2}=\frac{AB}{15}\)
Thời gian người thứ hai đi hết BC là:
\(t'_2=\frac{BC}{v'2}=\frac{AB}{2v'_2}=\frac{AB}{60}\)
Thời gian người thứ hai đi hết chu vi là:
\(t'=2\left(t_2+t'_2\right)=\frac{AB}{6}\)
Vì t > t' nên t - t' = 1/6
Thay số vào ta được AB = 5km BC = 2,5 km
=> P = 2 (AB + BC) = 15 km
Đổi: \(20ph=\dfrac{1}{3}h\)
a) \(v_1=\dfrac{S_1}{t_1}=\dfrac{15}{\dfrac{1}{3}}=45\left(km/h\right)\)
b) \(S_2=v_2.t_2=15.0,5=7,5\left(km\right)\)
c) \(t_3=\dfrac{S_3}{v_3}=\dfrac{10}{60}=\dfrac{1}{6}\left(h\right)\)
TT:
S=2km;v1=30km/h;v2=10km/h
t=1h
giải
a, 2 người chuyển động cùng chiều
Coi người đi bộ đứng yên so với người đi xe đạp. Vận tốc của người đi xe đạp so với người đi bộ: v12=v1-v2=20(km/h)
Quãng đg người đi xe đạp so với ng đi bộ: S/=v12.t=20(km)
Số vòng người đi xe đạp đi đc : n=\(\dfrac{20}{2}\)=10(vòng)
vậy gặp nhau 10 lần
Mình nghĩ là như vậy nha bn còn phần b ko bt
- Gọi vận tốc của vận động viên chạy và vận động viên đua xe đạp là: v1, v2 (v1> v2> 0). Khoảng cách giữa hai vận động viên chạy và hai vận động viên đua xe đạp là l1, l2 (l2>l1>0). Vì vận động viên chạy và vận động viên đua xe đạp chuyển động cùng chiều nên vận tốc của vận động viê đua xe khi chộn vận động viên chạy làm mốc là:
v21= v2 - v1 = 10 - 6 = 4 (m/s).
- Thời gian hai vận động viên đua xe vượt qua một vận động viên chạy là:
\(t_1=\frac{l_2}{v_{21}}=\frac{20}{4}=5\)(s)
- Thời gian một vận động viên đua xe đạp đang ở ngang hàng một vận động viên chạy đuổi kịp một vận động viên chạy tiếp theo là:
\(t_1=\frac{l_2}{v_{21}}=\frac{10}{4}=2,5\) (s)
- Phân biệt chuyển động và chuyển động không đều
- Chuyển động đều là chuyển động mà vận tốc có độ lớn không thay đổi theo thời gian.
- Chuyển động không đều là chuyển động mà vận tốc có độ lớn thay đổi theo thời gian.
bài 4:
Giải :
a.Sau khi tăng tốc thêm 3 km/h thì đến nơi sớm hơn dự kiến là 1h ,mà S là như nhau nên theo bài ra ta có:
V1.t = (V1 +3 ).(t -1).
12.t = (12+3 ).(t -1).
12.t = 15.t -15.
15 = 15.t – 12.t.
5 = t.
b. Gọi t’1 là thời gian đi quãng đường s1: t’1 = S1/V1 ( / : là chia).
Thời gian sửa xe : t = 15 phút = ¼ h.
Thời gian đi quãng đường còn lại : t’2 = (S1-S2)/V2.
Theo bài ra ta có : t1 – (t’1 + ¼ + t’2) = 30 ph = ½ h.
T1 – S1/V1 – ¼ - (S-S1)/V2 = ½. (1).
S/V1 – S/V2 – S1.(1/V1- 1/V2) = ½ +1 /4 =3/4 (2).
Từ (1) và (2) suy ra: S1.(1/V1 – 1/V2) = 1- ¾ = ¼.
Hay S1 = ¼ . (V1- V2)/(V2-V1) = ¼ . (12.15)/(15-12) = 15 km.
bài 1:
a) Lúc xe từ B xuất phat thì xxe từ A đi được quáng đường: S=40 km
*/PTCĐ:
X1= 40+ 40*t
X2= 25*t
giải thích cặn kẽ như sau:
do xe máy và xe đạp di chuyển ngược nhau và gặp nhau tại một điểm nên ta có:
t1=t2(t1 là của xe máy,t2 là của xe đạp)
\(\Leftrightarrow\frac{S_1}{v_1}=\frac{S_2}{v_2}\)
\(\Leftrightarrow\frac{S_1}{30}=\frac{S_2}{10}\)
mà quãng đường xe máy cộng quãng đường xe đạp bằng quãng đường AB(S1+S2=S=60)(cái này vẽ sơ đồ là biết)
\(\Rightarrow S_2=60-S_1\)
thế vào phương trình trên ta có:
\(\frac{S_1}{30}=\frac{60-S_1}{10}\)
giải phương trình ta được S1=45km,S2=15km
từ đó ta có t1=1.5 giờ và điểm gặp cách A 45km
Gọi t là thời gian 2 xe gặp nhau:
Vì 2 xe đi ngược chiều nên
t= \(\frac{s}{v_1+v_2}=\frac{60}{30+10}=\frac{3}{2}=1,5\left(h\right)=1h30'\)
Vị trí gặp nhau đó cách A:
L=v1.t= 30.1,5=45(km)
Sau 2 giờ người thứ nhất đi được:
\(S_1=V_1.t_1=32.2=64\left(km\right)\)
Sau 2 giờ thì người thứ hai đi được:
\(S_2=V_2.t_1=35.2=70\left(km\right)\)
Khoảng cách của 2 người sau 2 giờ là:
\(S_3=S_2-S_1=70-64=6\left(km\right)\)