Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm tắt nên bạn không hiểu chỗ nào thỉ hỏi lại nhé :)
Gọi vận tốc dự định là: a>0 (km/h)
Gọi thời gian dự định là: b>0 (h)
Theo bài ra ta có: \(\left\{{}\begin{matrix}AB=a.b\\AB=\left(a+5\right)\left(b-0,4\right)\\AB=\left(a-5\right)\left(b+0,5\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a+5\right)\left(b-0,4\right)-ab=0\\\left(a-5\right)\left(b+0,5\right)-ab=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}5b-0,4a-2=0\\0,5a-5b-2,5=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=45\\b=4\end{matrix}\right.\)
=> \(AB=a.b=45.4=180\)
Vậy quãng đường AB là 180 km
Gọi thời gian và vận tốc lần lượt là a,b
Theo đề, ta có: (a-0,4)(b+5)=ab và (a+0,5)(b-5)=ab
=>5a-0,4b=2 và -5a+0,5b=2,5
=>a=4 và b=45
Gọi vận tốc ô tô dự định đi từ A đến B là \(x\) (km/h). ĐK: \(x>5\)
Gọi thời gian ô tô dự định đi từ A đến B là \(y\) (h). ĐK: \(y>0\)
Suy ra độ dài quãng đường AB là Vận tốc x thời gian = \(xy\) (km)
Đổi: \(30ph=\frac{1}{2}h;20ph=\frac{1}{3}h\)
Nếu vận tốc ô tô tăng thêm 10km/h thì vận tốc ô tô khi đó là: \(x+10\) (km/h)
Khi đó ô tô đến B sớm hơn 30 phút so với dự định nên thời gian ô tô đi đến B là \(y-\frac{1}{2}\)(h)
Suy ra độ dài quãng đường AB: \(\left(x+10\right).\left(y-\frac{1}{2}\right)\)(km)
Ta có phương trình: \(xy=\left(x+10\right).\left(y-\frac{1}{2}\right)\)(1)
Nếu vận tốc ô tô tăng thêm 10km/h thì vận tốc ô tô khi đó là: \(x-5\) (km/h)
Khi đó ô tô đến B muộn 20 phút so với dự định nê thời gian ô tô đi đến B là \(y+\frac{1}{3}\)(h)
Suy ra độ dài quãng đường AB: \(\left(x-5\right).\left(y+\frac{1}{3}\right)\)(km)
Ta có phương trình: \(xy=\left(x-5\right).\left(y+\frac{1}{3}\right)\)(2)
Từ (1) và (2) ta có hệ phương trình: \( \begin{cases} xy= (x+10).(y- {\frac{1}{2}}) & \quad \\ xy= (x-5).(y+ {\frac{1}{3}}) & \quad \\ \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} x= 50 & \quad \\ y= 3 & \quad \\ \end{cases}\)(tmđk)
Vận tốc ô tô dự định đi từ A đến B là 50 km/h
Thời gian ô tô dự định đi từ A đến B là 3 h
Suy ra độ dài quãng đường AB: \(xy=50.3=150\)(km)
Vậy độ dài quãng đường AB là 150 km.
(Hệ phương trình thì bạn tự giải nhé)
Gọi vận tốc ô tô dự định đi từ A đến B là \(x\) (km/h). ĐK: \(x>5\)
Gọi thời gian ô tô dự định đi từ A đến B là \(y\) (h). ĐK: \(y>0\)
Suy ra độ dài quãng đường AB là Vận tốc x thời gian = \(xy\) (km)
Đổi: \(30ph=\frac{1}{2}h;20ph=\frac{1}{3}h\)
Nếu vận tốc ô tô tăng thêm 10km/h thì vận tốc ô tô khi đó là: \(x+10\) (km/h)
Khi đó ô tô đến B sớm hơn 30 phút so với dự định nên thời gian ô tô đi đến B là \(y-\frac{1}{2}\)(h)
Suy ra độ dài quãng đường AB: \(\left(x+10\right).\left(y-\frac{1}{2}\right)\)(km)
Ta có phương trình: \(xy=\left(x+10\right).\left(y-\frac{1}{2}\right)\)(1)
Nếu vận tốc ô tô tăng thêm 10km/h thì vận tốc ô tô khi đó là: \(x-5\) (km/h)
Khi đó ô tô đến B B muộn 20 phút so với dự định nê thời gian ô tô đi đến B là \(y+\frac{1}{3}\)(h)
Suy ra độ dài quãng đường AB: \(\left(x-5\right).\left(y+\frac{1}{3}\right)\)(km)
Ta có phương trình: \(xy=\left(x-5\right).\left(y+\frac{1}{3}\right)\)(2)
Từ (1) và (2) ta có hệ phương trình: \( \begin{cases} xy= (x+10).(y- {\frac{1}{2}}) & \quad \\ xy= (x-5).(y+ {\frac{1}{3}}) & \quad \\ \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} x= 50 & \quad \\ y= 3 & \quad \\ \end{cases}\)(tmđk)
Vận tốc ô tô dự định đi từ A đến B là 50 km/h
Thời gian ô tô dự định đi từ A đến B là 3 h
Suy ra độ dài quãng đường AB: \(xy=50.3=150\)(km)
Vậy độ dài quãng đường AB là 150 km.
(Hệ phương trình thì bạn tự giải nhé)
Gọi x, y lần lượt là vận tốc, thời gian dự định của xe. ĐK : x >5; y > 1/5
Theo điều kiện thứ nhất ta có pt : \(\left(x+5\right)\left(y-\frac{1}{3}\right)=xy\Rightarrow-\frac{1}{3}x+5y=\frac{5}{3}\)(1)
theo điều kiện thứ hai ta có pt : \(\left(x-5\right)\left(y+\frac{2}{5}\right)=xy\Rightarrow\frac{2}{5}x-5y=2\)(2)
Từ (1) và (2) => x = 55 ; y =4
Quãng đường AB = 220km
áp án: V=28 km/h( t/g dự định)
X=6 giờ( t/g dự định)
Giải thích các bước giải:Gọi giờ dự định là x, vận tốc dự định là v.
Vậy ta có quãng đường là v*x (km)
Ta có hệ hai phương trình:
(v+14) * (x-2) = v*x
(v-4) * (x+1) =v *x
Giải hệ phương trình này, ta có được
v = 28 km/h (vận tốc dự định)
x = 6 giờ (thời gian dự định)
V=28 km/h( t/g dự định)
X=6 giờ( t/g dự định)
Giải thích các bước giải:Gọi giờ dự định là x, vận tốc dự định là v.
Vậy ta có quãng đường là v*x (km)
Ta có hệ hai phương trình:
(v+14) * (x-2) = v*x
(v-4) * (x+1) =v *x
Giải hệ phương trình này, ta có được
v = 28 km/h (vận tốc dự định)
x = 6 giờ (thời gian dự định)
gọi vận tốc dự kiến ban đầu của ô tô là x (km/h)dk x>0
thời gian dự định ô tô đi được là \(\frac{450}{x}\) (h)
vận tốc của ô tô tăng so với dự kiến là x+5(km/h)
\(\Rightarrow\)thời gian thực tế ô tô đi được là \(\frac{450}{x+5}\) (h)
vì khi đi ô tô tăng vận tốc lớn hơn dự kiến 5km/h nên đã đến sớm hơn dự định 1 h nên ta có pt
\(\frac{450}{x+5}+1=\frac{450}{x}\)
giai ra ta co \(\orbr{\begin{cases}x=45\\x=-50\end{cases}}\)