Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta biết rằng một số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9, do đó hiệu của chúng chia hết cho 9.
Như vậy : \(2k-a⋮9\)
và \(:a-k⋮9\)
Suy ra : ...
Ta biết rằng một số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9, do đó hiệu của chúng chia hết cho 9.
Như vậy : \(2a-k⋮3\)
và \(a-k⋮3\)
Suy ra : \(a⋮3\)
...
vì tổng các chữ số có cùng dư khi chia cho 9
và a và 2a có tổng các chữ số giống nhau nên a và 2a có cung dư khi chia cho 9
Đặt a=9q+r
2a=9k+r
(q,k,r thuộc N; k>q)
=>2a-a=a=(9k+1)-(9q+r)
=9k+r-9q-r
=9(k-q) chia hết cho 9
=> a chia hết cho 9 (ĐPCM)
Vì tổng các chữ số có cùng dư khi chia cho 9 và a; 2a có tổng các chữ số giống nhau nên a; 2a có cùng dư chia cho 9.
Đặt a = 9q + r
2a =9k + r
(q; k; r thuộc N*; k > q)
=> 2a - a = a
=> (9k + r) - (9q + r)
=> 9k + r - 9q - r
=> 9(k - q) chia hết cho 9.
=> a chia hết cho 9.
Một số và tổng các chữ số của chúng khi chia cho 9 có cùng số dư và hiệu của chúng chia hết cho 9
Gọi tổng các chữ số của a và 4a là k, ta có:
4a - k chia hết cho 9
a - k chia hết cho 9
=> (4a - k ) - ( a -k) chia hết cho 9
=> 3a chia hết cho 9
=> a chia hết cho 3 (đpcm)
Bạn tham khảo ở đây: https://olm.vn/hoi-dap/question/288658.html
Giải:
Ta biết rằng một số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9,do đó hiệu của chúng chia hết cho 9.
Như vậy:2a-k chia hết cho 9
và a-k chia hết cho 9
Suy ra : (2a-k)-(a-k) chia hết cho 9
Do đó : a chia hết cho 9