K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2019

Gọi A là biến cố: “Cả hai cùng ném bóng trúng vào rổ.

Gọi X là biến cố: “người thứ nhất ném trúng rổ.“=> P x = 1 5  

Gọi Y là biến cố: “người thứ hai ném trúng rổ.“=>  P Y = 2 7

Ta thấy biến cố X, Y là 2 biến cố độc lập nhau, theo công thức nhân xác suất ta có:

P(A)=P(X.Y)=P(X).P(Y)= 1 5 . 2 7 = 2 35

Chọn đáp án D

25 tháng 4 2017

Gọi A là biến cố: “Cả hai cùng ném bóng trúng vào rổ.

Gọi X là biến cố: “người thứ nhất ném trúng rổ. Theo giả thiết P(X)=1/5

Gọi Y là biến cố: “người thứ hai ném trúng rổ.Theo giả thiết P(Y)=2/7

Ta thấy biến cố X, Y là 2 biến cố độc lập nhau, theo công thức nhân xác suất ta có:

 

Chọn D.

19 tháng 9 2017

Đáp án A

Xác suất cần tính là

3 tháng 3 2017

Gọi A là biến cố: “Cả hai cùng ném bóng trúng vào rổ.

Gọi X là biến cố: “người thứ nhất ném trúng rổ” ⇒ P X = 1 5 .  

Gọi Y là biến cố: “người thứ hai ném trúng rổ" ⇒ P Y = 2 7 .  

Ta thấy biến cố X, Y là 2 biến cố độc lập nhau, theo công thức nhân xác suất ta có:

  P ( A ) = ​ P ( X ) . P ( Y ) = 1 5 .    2 7 =    2 35

Chọn đáp án D

5 tháng 11 2018

Gọi A là biến cố “Xạ thủ thứ i bắn trúng bia” i = 1,2.

Khi đó, P(A1) =1/2; P(A2) = 1/3; A1 và A2 độc lập với nhau

X =A1∩ A2 nên P(X) = P(A1∩ A2) = P(A1.A2) = P(A1).P(A2) = 1/6

Chọn đáp án là B

21 tháng 7 2019

Đáp án B.

Xác suất để xạ thủ thứ nhất bắn không trúng bia là: 

Xác suất để xạ thủ thứ hai bắn không trúng bia là:

Gọi biến cố A:Có ít nhất một xạ thủ không bắn trúng bia. Khi có biến cố A có 3 khả năng xảy ra:  

* Xác suất người thứ nhất bắn trúng bia, người thứ hai không bắn trúng bia là   

* Xác suất người thứ nhất không bắn trúng bia, người thứ hai bắn trúng bia là .

* Xác suất cả hai người đều bắn không trúng bia là .

Vậy .

27 tháng 11 2019

Đáp án D

Phương pháp:

A, B là các biến cố độc lập thì P(A.B) = P(A).P(B)

Chia bài toán thành các trường hợp:

- Một người bắn trúng và một người bắn không trúng,

- Cả hai người cùng bắn không trúng.

Sau đó áp dụng quy tắc cộng.

Cách giải:

Xác suất để xạ thủ thứ nhất bắn không trúng bia là:  1   -   1 2   =   1 2

Xác suất để xạ thủ thứ nhất bắn không trúng bia là:  1   -   1 3   =   2 3

Gọi biến cố A:”Có ít nhất một xạ thủ không bắn trúng bia ”.

Khi đó biến cố A có 3 khả năng xảy ra:

+) Xác suất người thứ nhất bắn trúng bia, người thứ hai không bắn trúng bia:  1 2 . 2 3   =   1 3

+) Xác suất người thứ nhất không bắn trúng bia, người thứ hai bắn trúng bia:  1 2 . 1 3   =   1 6

+) Xác suất cả hai người đều bắn không trúng bia:

Khi đó

5 tháng 8 2019

Gọi A là biến cố “Xạ thủ thứ i bắn trúng bia”, i=1,2

TH1. Xạ thủ thứ nhất bắn trúng, xạ thủ 2 bắn trượt thì xác suất là:

P A 1 = 1 2 . 1 − 1 3

TH2. Xạ thủ thứ nhất bắn trượt, xạ thủ thứ 2 bắn trúng thì xác suất là:

P A 2 = 1 − 1 2 . 1 3

TH3. Cả 2 xạ thủ đều bắn trượt

P A 3 = 1 − 1 2 . 1 − 1 3

Xác suất của biến cố Y là:

P Y = P A 1 + P A 2 + P A 3 = 5 6

Đáp án. D

AH
Akai Haruma
Giáo viên
12 tháng 1 2023

Lời giải:

a. Xác suất chỉ người thứ nhất bắn trúng là:

$0,1(1-0,2)(1-0,3)=0,056$ 

b. Xác suất không người nào bắn trúng: $(1-0,1)(1-0,2)(1-0,3)=0,504$

Xác suất có ít nhất 1 người bắn trúng: $1-0,504=0,496$

c. Xác suất cả 3 người bắn trúng: $0,1.0,2.0,3=0,006$

d.

Xác suất người đầu bắn trúng và người 2 trượt:

$0,1(1-0,2)=0,08$

e. 

Xác suất có đúng 1 người bắn trúng:

$0,1(1-0,2)(1-0,3)+(1-0,1).0,2.(1-0,3)+(1-0,1)(1-0,2)0,3=0,398$

f. Xác suất có ít nhất 2 người bắn trúng:

1- xác suất cả 3 cùng trượt - xác suất chỉ có 1 người bắn trúng

= $1-(1-0,1)(1-0,2)(1-0,3)-0,398=0,098$

g.

Xác suất không có quá 2 người bắn trúng 

= 1- xác suất cả 3 người trúng = $1-0,1.0,2.0,3=0,994$