Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
#)Giải :
Vì \(\widehat{AOC}\)và \(\widehat{BOD}\)là hai góc đối đỉnh \(\Rightarrow\widehat{AOC}=\widehat{BOD}\left(=70^o\right)\)
Vì \(\widehat{AOC}\)và \(\widehat{BOC}\)là hai góc kề bù
\(\Rightarrow\widehat{BOC}=180^o-\widehat{AOC}\)
\(=180^o-70^o\)
\(=110^o\)
\(\Rightarrow\widehat{BOC}=110^o\)
Vì \(\widehat{BOC}\)và \(\widehat{AOD}\)là hai góc đối đỉnh \(\Rightarrow\widehat{BOC}=\widehat{AOD}\left(=110^o\right)\)
#~Will~be~Pens~#
Theo đề bài biết :
\(\widehat{AOC}\)- \(\widehat{BOC}\)= 70o
Ngoài ra còn biết :
\(\widehat{AOC}\)+ \(\widehat{BOC}\)= 180o ( kề bù )
\(\rightarrow\)\(\widehat{AOC}\)= ( 70o + 180o ) : 2 = 125o
\(\rightarrow\)\(\widehat{BOC}\)= 180o - 125o = 55o
Có \(\widehat{AOD}\)+ \(\widehat{AOC}\)= 180o ( kề bù )
\(\rightarrow\)\(\widehat{AOD}\)= 180o - \(\widehat{AOC}\)= 180o - 125o = 55o
Có \(\widehat{BOD}\)+ \(\widehat{BOC}\)= 180o ( kề bù )
\(\rightarrow\)\(\widehat{BOD}\)= 180o - \(\widehat{BOC}\)
180o - 55o = 125o
Ta có góc AOC-góc BOC= 60 độ mà góc AOC+ góc COB= 180 độ
=> Góc AOC=\(\frac{180+60}{2}=120\)(độ)
và Góc COB=180 độ -góc AOC =180-120=60độ
Ta có góc AOC= góc BOD= 120 độ (đối đỉnh)
góc COB= góc AOD =60 độ (đối đỉnh)
Vậy........
2 đường thẳng AB và CD cắt nhau tại O. Biết rằng AOC-BOC= 70o. Tính số đo các góc AOC, BOC, BOD, AOD
Hai đường thẳng AB và CD cắt nhau tại O. Biết rằng AOC -BOC =50o .Tính số đo các góc AOC,BOC,BOD,AOD
hai đường thẳng AB và CD cắt nhau ở O biết rằng AOC - BOC = 50 độ tính số đo các góc AOC,BOC,BOD,AOD
a) Ta có: \(\widehat{AOB}\) và \(\widehat{BOC}\) là hai góc kề bù(gt)
nên \(\widehat{AOB}+\widehat{BOC}=180^0\)
\(\Leftrightarrow\widehat{AOB}+5\cdot\widehat{AOB}=180^0\)
\(\Leftrightarrow6\cdot\widehat{AOB}=180^0\)
hay \(\widehat{AOB}=30^0\)
Ta có: \(\widehat{BOC}=5\cdot\widehat{AOB}\)(gt)
nên \(\widehat{BOC}=5\cdot30^0\)
hay \(\widehat{BOC}=150^0\)
Vậy: \(\widehat{AOB}=30^0\); \(\widehat{BOC}=150^0\)
b) Trên cùng một nửa mặt phẳng bờ chứa tia OC, ta có: \(\widehat{DOB}< \widehat{BOC}\left(75^0< 150^0\right)\)
nên tia OD nằm giữa hai tia OB và OC
\(\Leftrightarrow\widehat{COD}+\widehat{BOD}=\widehat{COB}\)
\(\Leftrightarrow\widehat{COD}=\widehat{COB}-\widehat{BOD}=150^0-75^0=75^0\)
Trên cùng một nửa mặt phẳng bờ chứa tia OC, ta có: \(\widehat{COD}< \widehat{COA}\left(75^0< 180^0\right)\) nên tia OD nằm giữa hai tia OC và OA
\(\Leftrightarrow\widehat{COD}+\widehat{AOD}=\widehat{COA}\)
\(\Leftrightarrow\widehat{AOD}=\widehat{COA}-\widehat{COD}=180^0-75^0\)
hay \(\widehat{AOD}=105^0\)
Vậy: \(\widehat{AOD}=105^0\)
a) \(\widehat{AOB}\) và \(\widehat{BOC}\) kề bù \(\Rightarrow\widehat{AOB}+\widehat{BOC}=180^0\) mà \(\widehat{BOC}=5\widehat{AOB}\)
\(\Rightarrow\widehat{AOB}+5\widehat{AOB}=180^0\Rightarrow6\widehat{AOB}=180^0\\ \Rightarrow\widehat{AOB}=30^0\Rightarrow\widehat{BOC}=150^0\).
b) Do \(OD\) nằm trong góc \(\widehat{BOC}\) \(\Rightarrow\) tia \(OD\) nằm giữa hai tia \(OB,OC\)
\(\Rightarrow\)tia \(OB\) và tia \(OA\) nằm cùng phía nhau so với tia \(OD\)
\(\Rightarrow\) tia \(OB\) nằm giữa hai tia \(OA,OD\)
\(\Rightarrow\widehat{AOD}=\widehat{AOB}+\widehat{BOD}=30^0+75^0=105^0\).
c) Nếu chỉ xét trường hợp các góc tạo bởi hai tia liên tiếp nhau:
Trên nửa mặt phẳng bờ \(AC\) có \(n+4\) tia (gồm \(4\) tia \(OA,OB,OC,OD\) và \(n\) tia vẽ thêm).
Cứ hai tia cạnh nhau tạo thành 1 góc
\(\Rightarrow\) Ta có \(n+3\) góc.
\(\widehat{AOD}=110^0\),\(\widehat{BOC}=110^0\),\(\widehat{BOD}=70^0\)