Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(R=d\left(I;d\right)=\dfrac{\left|-2\cdot3+1\cdot\left(-4\right)\right|}{\sqrt{3^2+\left(-4\right)^2}}=2\)
Phương trình (C) là:
(x+2)^2+(y-1)^2=2^2=4
Bài 1:
a: I thuộc Δ nên I(x;-2x-3)
IA=IB
=>IA^2=IB^2
=>\(\left(x+5\right)^2+\left(-2x-3-1\right)^2=\left(x+2\right)^2+\left(-2x-3-4\right)^2\)
=>x^2+10x+25+4x^2+16x+16=x^2+4x+4+4x^2+28x+49
=>26x+41=32x+53
=>-6x=-12
=>x=2
=>I(2;-7): R=IA=căn 113
Phương trình (C) là:
(x-2)^2+(y+7)^2=113
2: vecto IA=(7;-8)
Phương trình tiếp tuyến là:
7(x+5)+(-8)(y-1)=0
=>7x+35-8y+8=0
=>7x-8y+43=0
22.
Đường thẳng d có 1 vtpt là \(\left(2;-3\right)\)
Do đó \(\left(-3;2\right)\) ko là 1 vtpt của d (vì ko thể biểu diễn thông qua vt (2;-3)
23.
Thay tọa độ 4 điểm vào thì điểm A(5;3) ko thỏa mãn
24.
Đường thẳng d nhận \(\left(3;5\right)\) là 1 vtpt nên nhận \(\left(5;-3\right)\) là 1 vtcp
\(\Rightarrow\) d có hệ số góc là \(-\frac{3}{5}\)
Đáp án C sai
Câu 32:
Gọi M là giao điểm d1;d2 thì tọa độ M là nghiệm của hệ:
\(\left\{{}\begin{matrix}3x-5y+2=0\\5x-2y+4=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{16}{19};-\frac{2}{19}\right)\)
Do d song song d3 nên d nhận \(\left(2;-1\right)\) là 1 vtpt
Phương trình d:
\(2\left(x+\frac{16}{19}\right)-1\left(y+\frac{2}{19}\right)=0\Leftrightarrow2x-y+\frac{30}{19}=0\)
Câu 33:
\(\overrightarrow{BC}=\left(1;-2\right)\)
Do AH vuông góc BC nên AH nhận \(\left(1;-2\right)\) là 1 vtpt
Phương trình AH:
\(1\left(x+1\right)-2\left(y-2\right)=0\Leftrightarrow x-2y+5=0\)
Câu 34:
Tọa độ M là: \(M\left(\frac{3}{2};4\right)\)
\(\overrightarrow{CM}=\left(-\frac{3}{2};6\right)=-\frac{3}{2}\left(1;-4\right)\)
Phương trình tham số CM: \(\left\{{}\begin{matrix}x=3+t\\y=-2-4t\end{matrix}\right.\)
Câu 30:
\(\overrightarrow{AB}=\left(-2;0\right)=-2\left(1;0\right)\) nên đường thẳng AB nhận \(\left(1;0\right)\) là 1 vtcp
Phương trình AB: \(\left\{{}\begin{matrix}x=1+t\\y=-7\end{matrix}\right.\)
Cả 4 đáp án đều ko chính xác
Câu 31:
Gọi M là trung điểm AB \(\Rightarrow M\left(-1;1\right)\)
\(\overrightarrow{AB}=\left(-6;-4\right)=-2\left(3;2\right)\Rightarrow\) đường trung trực AB nhận \(\left(3;2\right)\) là 1vtpt
Phương trình:
\(3\left(x+1\right)+2\left(y-1\right)=0\Leftrightarrow3x+2y+1=0\)
Sửa đề: x^2+y^2+2x+6y-15=0
Δ vuông góc d nên Δ: 3x+4y+c=0
(C);x^2+y^2+2x+6y-15=0
=>x^2+2x+1+y^2+6y+9-25=0
=>(x+1)^2+(y+3)^2=25
=>R=5; I(-1;-3)
Kẻ IH vuông góc AB
=>H là trung điểm của AB
=>AH=6/2=3cm
=>IH=4cm
=>d(I;Δ)=IH=4
=>|c+3-12|/5=4
=>c=-11 hoặc c=29
=>3x+4y-11=0 hoặc 3x+4y+29=0
Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}x+y-1=0\\3x-y+5=0\end{matrix}\right.\) \(\Rightarrow A\left(-1;2\right)\)
Gọi \(\alpha\) là góc giữa d1 và d2 \(\Rightarrow cos\alpha=\frac{\left|3-1\right|}{\sqrt{2}.\sqrt{10}}=\frac{\sqrt{5}}{5}\)
Do \(AB=BC\Rightarrow\Delta ABC\) cân tại B
Gọi \(\beta\) là góc giữa \(\Delta\) và \(d_1\) \(\Rightarrow\alpha=\beta\)
Giả sử \(\Delta\) nhận \(\left(a;b\right)\) là vtpt
\(\Rightarrow\frac{\left|a+b\right|}{\sqrt{2}\sqrt{a^2+b^2}}=\frac{\sqrt{5}}{5}\)
\(\Leftrightarrow5\left(a+b\right)^2=2\left(a^2+b^2\right)\)
\(\Leftrightarrow3a^2+10ab+3b^2=0\Rightarrow\left[{}\begin{matrix}3a=-b\\a=-3b\end{matrix}\right.\)
\(\Rightarrow\Delta\) có 2 vtpt là \(\left(1;-3\right);\left(3;-1\right)\)
Có 2 pt đường thẳng thỏa mãn:
\(\left[{}\begin{matrix}1\left(x-2\right)-3\left(y-2\right)=0\\3\left(x-2\right)-1\left(y-2\right)=0\end{matrix}\right.\)
Tọa độ giao điểm của 2 đường thẳng đã cho nếu có thì thỏa mãn hệ phươngtrình sau:
Chọn B.