Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Các điện tích q1 và q2 gây ra tại M các véc tơ cường độ điện trường E 1 → và E 2 → có phương chiều như hình vẽ:
Có độ lớn: E 1 = E 2 = k q ( a 2 + x 2 ) .
Cường độ điện trường tổng hợp tại M do các điện tích q 1 v à q 2 gây ra là:
E → = E 1 → + E 2 → ; có phương chiều như hình vẽ.
Có độ lớn: E = E 1 cos α + E 2 cos α = 2 E 1 cos α = 2 . k q ( a 2 + x 2 ) . x a 2 + x 2 = 2 k q x ( a 2 + x 2 ) 3 2
b) Theo câu a ta có E = 2 k q x ( a 2 + x 2 ) 3 2 = 2 k q a 2 x 2 3 + x 4 3 3 2 .
Để E có giá trị cực đại thì mẫu số phải có giá trị cực tiểu mà mẫu số có giá trị cực tiểu khi a 2 x 2 3 = x 4 3 (theo bất đẳng thức Côsi) ð a 2 = x 2 hay x = a.
a) Các điện tích q 1 v à q 2 gây ra tại M các véc tơ cường độ điện trường E 1 → và E 2 → có phương chiều như hình vẽ.
Có độ lớn: E 1 = E 2 = k q ε ( a 2 + x 2 )
Cường độ điện trường tổng hợp tại M do các điện tích q 1 v à q 2 gây ra là:
E → = E 1 → + E 2 → ; có phương chiều như hình vẽ.
Có độ lớn: 2 E 1 cos α = 2 . k q ( a 2 + x 2 ) a a 2 + x 2 = 2 k q a ( a 2 + x 2 ) 3 2
b) Theo câu a ta có: E = 2 k q a ( a 2 + x 2 ) 3 2 ; để E có giá trị cực đại thì mẫu số phải có giá trị cực tiểu mà mẫu số có giá trị cực tiểu khi x = 0 tức là M trùng với H.
Chọn đáp án B
Hai điện tích q 1 , q 2 trái dấu nên điểm có cường độ điện trường tổng hợp bằng 0 phải nằm ngoài đoạn thẳng AB và do q 1 , q 2 nên điểm này phải nằm về phía B.
Ta biểu diễn cường độ điện trường tại C như trên hình.
với EM = 0 áp dụng nguyên ký chồng chất điện trường: E1 +E2 =0 \(\Rightarrow\) \(\begin{cases}E_1=E_2\\\overrightarrow{E}_1\uparrow\downarrow\overrightarrow{E}_2\circledast\end{cases}\) TỪ\(\circledast\) và :\(\left|q_1\right|\) < \(\left|q_2\right|\) \(\Rightarrow\) M nằm trên AB và bên phía A
\(\Rightarrow\) -r1 +r2 =30 \(\otimes\)
lại có: E1 =E2 \(\Rightarrow\) k* \(\frac{\left|q_1\right|}{r^2_1}\)= k* \(\frac{\left|q_2\right|}{r^2_2}\)
\(\Leftrightarrow\)\(\frac{1}{r^2_1}\)= \(\frac{4}{r^2_2}\)\(\Rightarrow\)2 r1 -r2 = 0 \(\left(\otimes\otimes\right)\)
giải hệ pt \(\otimes\) và \(\left(\otimes\otimes\right)\) , ta được r1 =30; r2 =60
vậy M cách A 30cm
và cách B 60cm
D
D