Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc của người đi xe máy trên 3/4 quãng đường AB đầu (90 km) là x (km/h) (x > 0)
Vận tốc của người đi xe máy trên 1/4 quãng đường AB sau là 0,5x (km/h)
Vận tốc của người đi xe máy khi quay trở lại A là x + 10 (km/h)
Tổng thời gian của chuyến đi là 90 x + 30 0 , 5 x + 120 x + 10 + 1 2 = 8 , 5
⇔ 90 x + 60 x + 120 x + 10 = 8 ⇔ 150 x + 120 x + 10 = 8 ⇔ 75 ( x + 10 ) + 60 x = 4 x ( x + 10 ) ⇔ 4 x 2 − 95 x − 750 = 0 ⇔ x = 30 ( d o x > 0 )
Vậy vận tốc của xe máy trên quãng đường người đó đi từ B về A là 30 + 10 = 40 (km/h)
Gọi vận tốc hai xe lần lượt là \(a,b\left(b>a\right)\)(km/h)
Vì xe thứ hai đi được \(\dfrac{2}{3}\) đoạn đường mới gặp xe thứ nhất nên xe thứ nhật đi được \(\dfrac{1}{3}\) đoạn đường mới gặp xe thứ hai hay vận tốc xe thứ hai với xe thứ nhất lần lượt là \(2:1\)
Ta có:
\(b-a=10\) và \(\dfrac{b}{a}=\dfrac{2}{1}\)
Từ \(\dfrac{b}{a}=\dfrac{2}{1}\) suy ra \(\dfrac{b}{2}=\dfrac{a}{1}\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{b}{2}=\dfrac{a}{1}=\dfrac{b-a}{2-1}=\dfrac{10}{1}=10\)
Suy ra:
\(b=10\cdot2=20\)
\(a=10\cdot1=10\)
Vậy vận tốc xe thứ nhất sẽ là 10 km/h và vận tốc xe thứ hai là 20 km/h.
Gọi vận tốc của hai người ban đầu là x (km/h) (x > 0 )
Sau khi đi 1 giờ, quãng đường còn lại là 60 - x (km)
Thời gian người thứ nhất đi quãng đường đó là : 60−xx60−xx
Thời gian người thứ hai đi quãng đường đó là: 60−xx+460−xx+4
Theo bài ra ta có phương trình: 60−xx−13=60−xx+460−xx−13=60−xx+4
Giải ta ta tìm được x = 20 (km/h).