K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(H=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}-\dfrac{1}{\sqrt{a}-2}\)

\(=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)

b: Để H<2 thì H-2<0

\(\Leftrightarrow\dfrac{\sqrt{a}-4-2\sqrt{a}+4}{\sqrt{a}-2}< 0\)

=>căn a-2>0

hay a>4

d: Để H=5 thì căn a-4=5 căn a-10

=>-4 căn a=-6

=>căn a=3/2

hay a=9/4

26 tháng 7 2018

a. \(ĐKXĐ:a\ge0,a\ne2\)

\(H=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}+\dfrac{1}{2-\sqrt{a}}\)

\(H=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(H=\dfrac{a-4-8-\sqrt{a}}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{\left(a-4\sqrt{a}\right)+\left(3\sqrt{a}-12\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(H=\dfrac{\sqrt{a}\left(\sqrt{a}-4\right)+3\left(\sqrt{a}-4\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)

b. Mk nghĩ là H < 2 chứ

\(H=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}< 2\)

\(\Leftrightarrow\dfrac{\sqrt{a}-4-2\sqrt{a}+4}{\sqrt{a}-2}=\dfrac{-\sqrt{a}}{\sqrt{a}-2}< 0\)

\(\Leftrightarrow\sqrt{a}-2>0\Leftrightarrow a>4\)

c. \(a^2+3a=0\Leftrightarrow a\left(a+3\right)=0\Leftrightarrow\left[{}\begin{matrix}a=0\left(n\right)\\a=-3\left(l\right)\end{matrix}\right.\)

Thay \(a=0\) và H ta được:

\(\dfrac{0-4}{0-2}=2\)

d. \(H=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}=5\Leftrightarrow\dfrac{\sqrt{a}-2-2}{\sqrt{a}-2}=5\Leftrightarrow1-\dfrac{2}{\sqrt{a}-2}=5\)

\(\Leftrightarrow\dfrac{2}{\sqrt{a}-2}=-4\Leftrightarrow-4\sqrt{a}+8=2\Leftrightarrow-4\sqrt{a}=-6\Leftrightarrow\sqrt{a}=\dfrac{3}{2}\Leftrightarrow a=\dfrac{9}{4}\)

28 tháng 10 2018

a,Đk: a≥0 ; a khác 4

H=\(\dfrac{\sqrt{a}+2}{\sqrt{a}+3}\) -\(\dfrac{5}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\) -\(\dfrac{1}{\sqrt{a}-2}\)

= \(\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

=\(\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

=\(\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)

=\(\dfrac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

=\(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)

b, Để H<2

<=>\(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) <2

<=> \(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) -2<0

<=>\(\dfrac{\sqrt{a}-4-2\sqrt{a}+4}{\sqrt{a}-2}\) <0

<=>\(\dfrac{-\sqrt{a}}{\sqrt{a}-2}\) <0

<=>\(\left\{{}\begin{matrix}-\sqrt{a}< 0\\\sqrt{a}-2>0\end{matrix}\right.\) ( vì \(\sqrt{a}>0< =>-\sqrt{a}< 0\)

<=> a>4

vậy để H <2 khi a>4

c, Ta có a\(^2\) +3a=0

<=> a(a+3)=0

<=>a=0 hoặc a=-3(vô lí)

+ Với a=0 <=>\(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) =\(\dfrac{0-4}{0-2}\) =2

d, Để H=5

<=> \(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) =5

<=>\(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) -5=0

<=>\(\dfrac{\sqrt{a}-4-5\sqrt{a}+10}{\sqrt{a}-2}\) =0

<=>-4\(\sqrt{a}\) +6=0

<=> a=\(\dfrac{9}{4}\)

8 tháng 8 2018

a) Rut gon H

\(H=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}+\dfrac{1}{2-\sqrt{a}}\)

\(H=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}-\dfrac{1}{\sqrt{a}-2}\)

DKXD : \(\left\{{}\begin{matrix}\sqrt{a}+3\ne0\\\sqrt{a}-2\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a\ne9\\a\ne4\end{matrix}\right.\)

Ta co : \(H=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\dfrac{5}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\dfrac{\sqrt{a}+3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(H=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(H=\dfrac{a-\sqrt{a}-6}{a+\sqrt{a}-6}\)

17 tháng 6 2016

Chắc đề em gõ bị lỗi nhỏ :) Cô sẽ sửa nhé :)

a. ĐK: \(a\ge0,a\ne4\)

\(H=\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{a+\sqrt{a}-6}=\frac{a-4-4-\sqrt{a}-3}{a+\sqrt{a}-6}\)

\(=\frac{a-\sqrt{a}-12}{a+\sqrt{a}-6}=\frac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\frac{\sqrt{a}-4}{\sqrt{a}-2}\)

b. \(H< 2\Leftrightarrow\frac{\sqrt{a}-4}{\sqrt{a}-2}< 2\Leftrightarrow\frac{\sqrt{a}-4}{\sqrt{a}-2}-2< 0\Leftrightarrow\frac{\sqrt{a}-4-2\sqrt{a}+4}{\sqrt{a}-2}< 0\)

\(\Leftrightarrow\frac{-\sqrt{a}}{\sqrt{a}-2}< 0\Leftrightarrow\sqrt{a}-2>0\Leftrightarrow x>4\)

Tương tự với các câu còn lại nhé :)

2 tháng 7 2021

câu a tham khảo ở đây

https://hoc24.vn/cau-hoi/.1145652136620

b) \(x=25\Rightarrow P=\dfrac{\sqrt{25}+1}{\sqrt{25}-3}=\dfrac{6}{2}=3\)

c) \(A< 1\Rightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-3}< 1\Rightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-1< 0\Rightarrow\dfrac{4}{\sqrt{x}-3}< 0\)

mà \(4>0\Rightarrow\sqrt{x}-3< 0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\Rightarrow0\le x< 9,x\ne4\)

 

2 tháng 7 2021

ở câu b cái chỗ biểu thức P đó sửa thành A giùm mình,mình đánh nhầm

21 tháng 9 2021

a) \(A=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right).\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\left(đk:a>0,x\ne1\right)\)

\(=\dfrac{a-1}{2\sqrt{a}}.\dfrac{\left(a-\sqrt{a}\right)\left(\sqrt{a}-1\right)-\left(a+\sqrt{a}\right)\left(\sqrt{a}+1\right)}{a-1}\)

\(=\dfrac{a\sqrt{a}-2a+\sqrt{a}-a\sqrt{a}-2a-\sqrt{a}}{2\sqrt{a}}\)

\(=\dfrac{-4a}{2\sqrt{a}}=-2\sqrt{a}\)

b) \(A=-2\sqrt{a}>-6\)

\(\Leftrightarrow\sqrt{a}< 3\Leftrightarrow0\le a< 9\) và \(a\ne1\)

c) \(a^2-3=0\Leftrightarrow a^2=3\Leftrightarrow\sqrt{a}=\sqrt[4]{3}\)

\(\Rightarrow A=-2\sqrt{a}=-2\sqrt[4]{3}\)