Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng tc |a|>=a dấu = xảy ra khi a>=0 tacó
|x-1|>=x-1 dấu = xảy ra khi x-1>=0
|x+3|>=x+3 dấu = xảy ra khi x+3>=0
|2x-5|=|5-2x|>=5-2x dấu=xảy ra khi 5-2x>=0
nên A>=(x-1)+(x+3)+(5-2x)=7
A=7 khix-1>=0;x+3>=0;5-2x>=0
=>x>=1;x>=-3;x<=5/2
=>1<=x<=5/2
Vậy minA=7 khi 1<=x<=5/2
(<= là nhỏ hơn or =;<= là lớn hơn or =)
1/ \(\left|a\right|=\frac{1}{3}\Rightarrow a=\pm\frac{1}{3};\left|b\right|=0,25=\frac{1}{4}\Rightarrow b=\pm\frac{1}{4}\)
Với a = 1/3, b = 1/4 thì \(A=3\cdot\frac{1}{3}-3\cdot\frac{1}{3}\cdot\frac{1}{4}-\frac{1}{4}=1-\frac{1}{4}-\frac{1}{4}=\frac{1}{2}\)
Với a = -1/3, b = -1/4 thì ....
Với a = -1/3, b = 1/4 thì...
Với a = 1/3,b = -1/4 thì...
2/
a, gõ lại đề
b, Vì \(\left|x+\frac{5}{6}\right|\ge0\Rightarrow B=2-\left|x+\frac{5}{6}\right|\le2\)
Dấu "=" xảy ra khi x + 5/6 = 0 <=> x = -5/6
Vậy Bmax = 2 khi x = -5/6
c, Ta có: \(\left|x\right|+\left|x+2\right|=\left|-x\right|+\left|x+2\right|\ge\left|-x+x+2\right|=2\)
Dấu "=" xảy ra khi \(-x\left(x+2\right)\ge0\Leftrightarrow-2\le x\le0\)
Vậy Cmin = 2 khi -2 <= x <= 0
Có: \(\hept{\begin{cases}\left|x+3\right|\ge x+3\\\left|8-x\right|\ge8-x\end{cases}}\)với mọi x
Do đó, \(\left|x+3\right|+\left|8-x\right|+5\ge\left(x+3\right)+\left(8-x\right)+5=16\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+3\ge0\\8-x\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x\ge-3\\x\le8\end{cases}}\)\(\Rightarrow-3\le x\le8\)
Vậy GTNN của |x + 3| + |8 - x| + 5 là 16 khi \(-3\le x\le8\)
|x-3| > 0
=> |x-3| + 6 > 6
=> (|x-3| + 6)2 > 62 = 36
=> B = (|x-3| + 6)2 - 7 > 36 - 7 = 29
Đúng rùi ^^