K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Lời giải:

a) Xét tam giác $ADH$ và $ACB$ có:

$\widehat{ADH}=\widehat{ACB}$ (do tính chất hcn)

$\widehat{AHD}=\widehat{ABC}=90^0$

$\Rightarrow \triangle ADH\sim \triangle ACB$ (g.g)

$\Rightarrow \frac{AD}{AC}=\frac{DH}{CB}=\frac{DE}{CK}$

$\Rightarrow \triangle ADE\sim \triangle ACK$ (c.g.c)

b) 

Từ tam giác đồng dạng phần a suy ra:

- $\widehat{DAE}=\widehat{CAK}$ (1)

$\Rightarrow \widehat{DAE}+\widehat{EAC}=\widehat{CAK}+\widehat{EAC}$

Hay $\widehat{DAC}=\widehat{EAK}$

- $\frac{AE}{AD}=\frac{AK}{AC}$ (2)

Từ $(1);(2)\Rightarrow \triangle AEK\sim \triangle ADC$ (c.g.c)

c) 

$\Rightarrow \widehat{AEK}=\widehat{ADC}=90^0$ (đpcm)

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Hình vẽ:

undefined

16 tháng 7 2020

*Hình vẽ tay hơi xấu thông cảm

a, Ta có: \(\frac{DE}{DH}=\frac{CK}{BC}\Rightarrow\frac{DE}{CK}=\frac{DH}{BC}\left(1\right)\)

Gọi giao điểm của AC và BD là O.

=> OA = OB = OC = OD

=> ∆OBC cân tại O

=> ^OCB = ^OBC hay ^ACB = ^OBC

Xét ∆AHD và ∆ABC có:

^AHD = ^ABC

^ADH = ^ACB ( = ^OBC)

=> ∆AHD ~ ∆ABC (g-g)

=> \(\frac{AD}{AC}=\frac{DH}{BC}\left(2\right)\)

Từ (1) và (2) => \(\frac{AD}{AC}=\frac{DE}{DH}\)

Xét ∆ADE và ∆ACK có:

\(\frac{AD}{AC}=\frac{DE}{DH}\)(cmt)

^ADE = ^ACK ( vì ^ADH = ^ACB)

=> ∆ADE ~ ∆ACK (c-g-c)

16 tháng 7 2020

b, Theo câu a, ∆ADE ~ ∆ACK

=>\(\hept{\begin{cases}\widehat{DAE}=\widehat{CAK}\Rightarrow\widehat{DAE}+\widehat{EAC}=\widehat{CAK}+\widehat{EAC}\Rightarrow\widehat{DAC}=\widehat{EAK}\\\frac{AE}{AK}=\frac{AD}{AC}\Rightarrow\frac{AE}{AD}=\frac{AK}{AC}\end{cases}}\)

=> ∆AEK ~ ∆ADC (c-g-c)

6 tháng 5 2021

a) Ta có :

AD = BC = 6 cm

Áp dụng hệ thức lượng trong tam giác ABD vuông tại A, ta có :

1/AD^2 + 1/AB^2 = 1/AH^2

<=> 1/6^2 + 1/8^2 = 1/AH^2

<=> AH = 4,8(cm)

b)

Áp dụng Pitago trong tam giác BCD vuông tại C có :

BC^2 + CD^2 = BD^2

<=> 6^2 + 8^2 = DB^2

<=> BD = 10(cm)

Xét hai tam giác vuông AHB và BCD có :

AH/BC = 4,8/6 = 4/5

AB/BD = 8/10 = 4/5

Do đó tam giác AHB đồng dạng với tam giác BCD