Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 2x\(^2\)-8=0
2x\(^2\)=8
x\(^2\)=4
x=2
b.3x\(^3\)-5x=0
x(3x\(^2\)-5)=0
\(\left[{}\begin{matrix}x=0\\x^2-5=0\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x=0\\x^2=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=^+_-\sqrt{5}\end{matrix}\right.\)
c.x\(^4\)+3x\(^2\)-4=0\(^{\left(\cdot\right)}\)
đặt t=x\(^2\) (t>0)
ta có pt: t\(^2\)+3t-4=0 \(^{\left(1\right)}\)
thấy có a+b+c=1+3+(-4)=0 nên pt\(^{\left(1\right)}\) có 2 nghiệm
t\(_1\)=1; t\(_2\)=\(\dfrac{c}{a}\)=-4
khi t\(_1\)=1 thì x\(^2\)=1 ⇒x=\(^+_-\)1
khi t\(_2\)=-4 thì x\(^2\)=-4 ⇒ x=\(^+_-\)2
vậy pt đã cho có 4 nghiệm x=\(^+_-\)1; x=\(^+_-\)2
d)3x\(^2\)+6x-9=0
thấy có a+b+c= 3+6+(-9)=0 nên pt có 2 nghiệm
x\(_1\)=1; x\(_2\)=\(\dfrac{c}{a}=\dfrac{-9}{3}=-3\)
e. \(\dfrac{x+2}{x-5}+3=\dfrac{6}{2-x}\) (ĐK: x#5; x#2 )
⇔\(\dfrac{\left(x+2\right)\left(2-x\right)}{\left(x-5\right)\left(2-x\right)}+\dfrac{3\left(x+2\right)\left(2-x\right)}{\left(x-5\right)\left(2-x\right)}\)=\(\dfrac{6\left(x-5\right)}{\left(x-5\right)\left(2-x\right)}\)
⇒2x - x\(^2\) + 4 - 2x + 6x - 6x\(^2\) + 12 - 6x - 6x +30 = 0
⇔-7x\(^2\) - 6x + 46=0
Δ'=b'\(^2\)-ac = (-3)\(^2\) - (-7)\(\times\)46= 9+53 = 62>0
\(\sqrt{\Delta'}=\sqrt{62}\)
vậy pt có 2 nghiệm phân biệt
x\(_1\)=\(\dfrac{-b'+\sqrt{\Delta'}}{a}=\dfrac{3+\sqrt{62}}{-7}\)
x\(_2\)=\(\dfrac{-b'-\sqrt{\Delta'}}{a}=\dfrac{3-\sqrt{62}}{-7}\)
vậy pt đã cho có 2 nghiệm x\(_1\)=.....;x\(_2\)=......
câu g làm tương tự câu c
(1)Phương trình đã cho tương đương với:
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là . Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:
Phương trình đã cho tương đương với:
=0
=0
vì với
thì:
a) ( x - 3)4 + ( x - 5)4 = 82
Đặt : x - 4 = a , ta có :
( a + 1)4 + ( a - 1)4 = 82
⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82
⇔ 2a4 + 12a2 - 80 = 0
⇔ 2( a4 + 6a2 - 40) = 0
⇔ a4 - 4a2 + 10a2 - 40 = 0
⇔ a2( a2 - 4) + 10( a2 - 4) = 0
⇔ ( a2 - 4)( a2 + 10) = 0
Do : a2 + 10 > 0
⇒ a2 - 4 = 0
⇔ a = + - 2
+) Với : a = 2 , ta có :
x - 4 = 2
⇔ x = 6
+) Với : a = -2 , ta có :
x - 4 = -2
⇔ x = 2
KL.....
b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8
⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680
⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680
Đặt : n2 - 9n + 19 = t , ta có :
( t - 1)( t + 1) = 1680
⇔ t2 - 1 = 1680
⇔ t2 - 412 = 0
⇔ ( t - 41)( t + 41) = 0
⇔ t = 41 hoặc t = - 41
+) Với : t = 41 , ta có :
n2 - 9n + 19 = 41
⇔ n2 - 9n - 22 = 0
⇔ n2 + 2n - 11n - 22 = 0
⇔ n( n + 2) - 11( n + 2) = 0
⇔ ( n + 2)( n - 11) = 0
⇔ n = - 2 hoặc n = 11
+) Với : t = -41 ( giải tương tự )
@Giáo Viên Hoc24.vn
@Giáo Viên Hoc24h
@Giáo Viên
@giáo viên chuyên
@Akai Haruma
6) ĐKXĐ: \(x\le-6\)
\(\sqrt{\left(x+6\right)^2}=-x-6\Leftrightarrow\left|x+6\right|=-x-6\)
\(\Leftrightarrow x+6=x+6\left(đúng\forall x\right)\)
Vậy \(x\le-6\)
7) ĐKXĐ: \(x\ge\dfrac{2}{3}\)
\(pt\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x-2\Leftrightarrow\left|3x-2\right|=3x-2\)
\(\Leftrightarrow3x-2=3x-2\left(đúng\forall x\right)\)
Vậy \(x\ge\dfrac{2}{3}\)
8) ĐKXĐ: \(x\ge5\)
\(pt\Leftrightarrow\sqrt{\left(4-3x\right)^2}=2x-10\)\(\Leftrightarrow\left|4-3x\right|=2x-10\)
\(\Leftrightarrow4-3x=10-2x\Leftrightarrow x=-6\left(ktm\right)\Leftrightarrow S=\varnothing\)
9) ĐKXĐ: \(x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-3\Leftrightarrow\left|x-3\right|=2x-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x-3\left(x\ge3\right)\\x-3=3-2x\left(\dfrac{3}{2}\le x< 3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
a) \(x^2+8=3\sqrt{x^3+8}\)
\(\left(x^2+8\right)^2=\left(3\sqrt{x^2+8}\right)^2\)
\(x^4+16x^2+64=9x^2+72\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
\(x^{11}+3x^{10}+x^9+3x^8+x^7-3x^6-17x^5+3x^4+x^3+3x^2+x+3=0\)
\(\Leftrightarrow\left(x^{11}+2x^{10}+4x^9+6x^8+9x^7+6x^6+4x^5+2x^4+x^3\right)+\left(x^{10}+2x^9+4x^8+6x^7+9x^6+6x^5+4x^4+2x^3+x^2\right)-\left(5x^9+10x^8+20x^7+30x^6+45x^5+30x^4+20x^3+10x^2+5x\right)+\left(3x^8+6x^7+12x^6+18x^5+27x^4+18x^3+12x^2+6x+3\right)=0\)
\(\Leftrightarrow x^3\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)+x^2\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)-5\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)+3\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x^3+x^2-5x+3\right)\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)\left(x+3\right)\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+3\right)\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)
Dễ thấy: \(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1>0\forall x\)
Nên \(\left[{}\begin{matrix}\left(x-1\right)^2=0\\x+3=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
đex ~ vừa thấy trên face lướt qua luôn