Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo mình đoán là phương trình này vô nghiệm. Nhưng mình không chứng minh được điều này :((
tui giải khác không biết phải không =]]
=>4 \(\left(\sqrt{x+1}\right)^2\)- 4 \(\left(\sqrt{1-x}\right)^2\)+(3 - x) = 3\(\left(\sqrt{1-x}\right)^2\)
= >4(x+1) -4(1-x) + (3-x) = 3(1-x)
=>4x +4 -4 +4x +3 -x = 3 - 3x
=>10x = 0
=> x=0 => pt VN
b) Nhẩm thấy \(x=-2\) là nghiệm, ta xét trường hợp:
* Với \(x>-2\) thì
\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}>-1+0+1=0=VP\)
* Với \(x< -2\) thì
\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}< -1+0+1=0=VP\)
Do đó pt có nghiệm duy nhất \(x=-2\)
c) Đặt \(\sqrt[4]{1-x}=a;\sqrt[4]{1+x}=b\)
\(\Rightarrow a^4+b^4=2\)
Theo đề bài \(a+b+ab=3\Rightarrow a+b=3-ab\)
Cần giải cái hệ (đợi một xíu em ăn xong em làm tiếp hoặc là nếu bận thì thứ 6 tuần này em làm):v \(\left\{{}\begin{matrix}a^4+b^4=3\\a+b=3-ab\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a^2+b^2\right)^2=3+2a^2b^2\\ab=3-a-b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[\left(a+b\right)^2-2ab\right]^2=3+2\left(3-a-b\right)^2\\ab=3-a-b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[\left(a+b\right)^2-2\left(3-a-b\right)\right]^2=3+2\left(3-a-b\right)^2\\ab=3-a-b\end{matrix}\right.\)
ĐKXĐ: \(x\ge3\)
Đặt \(\left\{{}\begin{matrix}\sqrt[]{x-3}=a\ge0\\\sqrt[3]{x+4}=b\end{matrix}\right.\) ta được hệ:
\(\left\{{}\begin{matrix}a+b=3\\b^3-a^2=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=3-a\\b^3-a^2=7\end{matrix}\right.\)
\(\Rightarrow\left(3-a\right)^3-a^2=7\)
\(\Leftrightarrow\left(a-1\right)\left(a^2-7a+20\right)=0\)
\(\Leftrightarrow...\)
`sqrt{x-3}+root{3}{x+4}=3(x>=3)`
`<=>sqrt{x-3}-1+root{3}{x+4}-2=0`
`<=>(x-3-1)/(sqrt{x-3}+1)+(x+4-8)/(root{3}{(x+4)^2}+2root{3}{x+4}+4)=0`
`<=>(x-4)/(sqrt{x-3}+1)+(x-4)/(root{3}{(x+4)^2}+2root{3}{x+4}+4)=0`
`<=>(x-4)(1/(sqrt{x-3}+1)+1/(root{3}{(x+4)^2}+2root{3}{x+4}+4))=0`
Mà `1/(sqrt{x-3}+1)+1/(root{3}{(x+4)^2}+2root{3}{x+4}+4)>0AAx>=3`
`<=>x-4=0<=>x=4(tmdk)`
`->S={4}`