Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x-2}-3\sqrt{x^2-4}=0\left(x\ge2\right)\)
\(\Leftrightarrow\sqrt{x-2}-3\sqrt{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)
(+) x - 2 = 0
<=> x = 2 (nhận)
(+) \(1-3\sqrt{x+2}=0\)
\(\Leftrightarrow9\left(x+2\right)=1\)
\(\Leftrightarrow x=\dfrac{1}{9}-2\)
\(\Leftrightarrow x=-\dfrac{17}{9}\) (loại)
a) Bình phương lên thôi
Đk: \(x\ge1\)
\(\sqrt{x-1}-\sqrt{5x-1}=\sqrt{3x-2}\)
\(\Rightarrow\left(x-1\right)+\left(5x-1\right)-2\sqrt{\left(x-1\right)\left(5x-1\right)}=3x-2\)
\(\Leftrightarrow2\sqrt{\left(x-1\right)\left(5x-1\right)}=3x\)
\(\Leftrightarrow4\left(x-1\right)\left(5x-1\right)=9x^2\) (vì \(x\ge1\))
\(\Leftrightarrow11x^2-24x+4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{2}{11}\end{matrix}\right.\)
Thử lại thấy ko thỏa mãn
Vậy pt vô nghiệm.
\(Đk:x\ge\dfrac{3}{2}\Rightarrow x>0\)
\(x^3-4x^2+5x-1-\sqrt{2x-3}=0\)
\(\Leftrightarrow2x^3-8x^2+10x-2-2\sqrt{2x-3}=0\)
\(\Leftrightarrow\left(2x^3-8x^2+8x\right)+\left[\left(2x-3\right)-2\sqrt{2x-3}+1\right]=0\)
\(\Leftrightarrow2x\left(x-2\right)^2+\left(\sqrt{2x-3}-1\right)^2=0\)
Ta có: \(\left\{{}\begin{matrix}2x\left(x-2\right)^2\ge0\left(x>0\right)\\\left(\sqrt{2x-3}-1\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow2x\left(x-2\right)^2+\left(\sqrt{2x-3}-1\right)^2\ge0\)
Do đó: \(\left\{{}\begin{matrix}2x\left(x-2\right)^2=0\\\left(\sqrt{2x-3}-1\right)^2=0\end{matrix}\right.\Leftrightarrow x=2\)
Thử lại ta có x=2 là nghiệm duy nhất của phương trình đã cho.
x^3-4x^2+5x-1-căn 2x-3=0
=>\(x^3-4x^2+5x-2-\left(\sqrt{2x-3}-1\right)=0\)
=>\(\left(x-1\right)\left(x-2\right)^2-\dfrac{2x-3-1}{\sqrt{2x-3}+1}=0\)
=>\(\left(x-2\right)\left[\left(x-1\right)\left(x-2\right)-\dfrac{2}{\sqrt{2x-3}+1}\right]=0\)
=>x-2=0
=>x=2
Lời giải:
ĐKXĐ: $x\geq -1$
PT \(\Leftrightarrow x(\sqrt{x+1}-2)+(x+5)(\sqrt{x+6}-3)=x^2-9\)
\(\Leftrightarrow x.\frac{x-3}{\sqrt{x+1}+2}+(x+5).\frac{x-3}{\sqrt{x+6}+3}-(x-3)(x+3)=0\)
\(\Leftrightarrow (x-3)\left[\frac{x}{\sqrt{x+1}+2}+\frac{x+5}{\sqrt{x+6}+3}-(x+3)\right]=0\)
Ta sẽ cm pt chỉ có nghiệm $x=3$ bằng cách chỉ ra biểu thức trong ngoặc vuông luôn âm.
Nếu $-1\leq x< 0$ thì:
\(\frac{x}{\sqrt{x+1}+2}+\frac{x+5}{\sqrt{x+6}+3}-(x+3)< \frac{x+5}{\sqrt{x+6}+3}-(x+3)< \frac{x+5}{3}-(x+3)=\frac{-2(x+4)}{3}< 0\)
Nếu $x\geq 0$ thì:
\(\frac{x}{\sqrt{x+1}+2}+\frac{x+5}{\sqrt{x+6}+3}-(x+3)\leq \frac{x}{2}+\frac{x+5}{3}-(x+3)=\frac{-(x+8)}{6}<0\)
Vậy........
a) Điều kiện $x \ge -5$. Đặt $\sqrt{x+5}=a$ thì $x=a^2-5$. Thay vào ta có $$\begin{array}{l} (a^2-5)^2-7(a^2-5)=6a-30 \\ \Leftrightarrow a^4-17a^2-6a+90=0 \Leftrightarrow (a^2+6a+10)(a-3)^2=0 \end{array}$$
Vậy $a=3 \Leftrightarrow \boxed{ x= 4}$.
\(5x+2\sqrt{x+1}-\sqrt{1-x}=-3\) \(\left(-1\le x\le1\right)\)
\(\Leftrightarrow\left(5x+3\right)+\dfrac{4\left(x+1\right)-\left(1-x\right)}{2\sqrt{x+1}+\sqrt{1-x}}=0\)
\(\Leftrightarrow\left(5x+3\right)+\dfrac{5x+3}{2\sqrt{x+1}+\sqrt{1-x}}=0\)
\(\Leftrightarrow\left(5x+3\right)\left(1+\dfrac{1}{2\sqrt{x+1}+\sqrt{1-x}}\right)=0\)
Pt \(1+\dfrac{1}{2\sqrt{x+1}+\sqrt{1-x}}=0\left(VT>0\right)\)
=> 5x + 3 = 0
<=> x = - 0,6 (nhận)
c) Ta có:
\(\sqrt{x+\frac{3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\)
\(\Leftrightarrow\sqrt{x+\frac{3}{x}}-2=\frac{x^2+7}{2\left(x+1\right)}-2\)
\(\Leftrightarrow\frac{\sqrt{x^2+3}-2\sqrt{x}}{\sqrt{x}}=\frac{x^2-4x+3}{2\left(x+1\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3}{\sqrt{x^3+3x}+2x}=\frac{x^2-4x+3}{2\left(x+1\right)}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4x+3=0\\\sqrt{x^3+3x}+2x=2\left(x+1\right)\end{cases}}\)
+) \(x^2-4x+3=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
+) \(\sqrt{x^3+3x}+2x=2x+2\Rightarrow x=1\)
a/ Đặt \(\sqrt{2\left(x^2-x\right)}=a\)
\(\Rightarrow a^4-2a^2=a\)
\(\Leftrightarrow a\left(a+1\right)\left(a^2-a-1\right)=0\)
\(ĐK:x\in R\)
Đặt \(\sqrt{x^2+3}=t\left(t\ge0\right)\)
\(PT\Leftrightarrow2t^2-\left(7x+1\right)t+3x^2+3x=0\\ \Delta=\left(7x+1\right)^2-4\cdot2\left(3x^2+3x\right)=25x^2-10x+1=\left(5x-1\right)^2\ge0\\ \Leftrightarrow\left[{}\begin{matrix}t=\dfrac{7x+1-5x+1}{4}\\t=\dfrac{7x+1+5x-1}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{2x+2}{4}=\dfrac{x+1}{2}\\t=\dfrac{12x}{4}=3x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=\dfrac{x+1}{2}\\\sqrt{x^2+3}=3x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2+3=\dfrac{x^2+2x+1}{4}\\x^2+3=9x^2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x^2-2x+11=0\\x^2=\dfrac{3}{8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\Delta=4-132< 0\\\left[{}\begin{matrix}x=\dfrac{\sqrt{6}}{4}\\x=-\dfrac{\sqrt{6}}{4}\end{matrix}\right.\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{\sqrt{6}}{4};\dfrac{\sqrt{6}}{4}\right\}\)
\(PT\Leftrightarrow x+2+x-2+3\sqrt[3]{\left(x+2\right)\left(x-2\right)}\left(\sqrt[3]{x+2}+\sqrt[3]{x-2}\right)=5x\)
\(\Leftrightarrow\sqrt[3]{\left(x+2\right)\left(x-2\right).5x}=x\)
\(\Leftrightarrow x^3=5x\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow x\left(x^2-5x^2+20\right)=0\)
\(\Leftrightarrow4x\left(5-x^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)