K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2021

`x=(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}})^2(1>=x>=0)`

`<=>x=((\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}})^2(1+\sqrt{1-\sqrt{x}}))/(1+\sqrt{1-\sqrt{x}})`

`<=>x=(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x})(1-1+\sqrt{x}))/(1+\sqrt{1-\sqrt{x}})`

`<=>x=\sqrt{x}.(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}))/(1+\sqrt{1-\sqrt{x}})`

`<=>\sqrt{x}((\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}))/(1+\sqrt{1-\sqrt{x}})-1)=0`

Có `x>=0`

`=>1-\sqrt{x}<=1`

`=>1+\sqrt{1-\sqrt{x}}<=2`

`=>1/(1+\sqrt{1-\sqrt{x}})>=1/2`

Mà `(\sqrt{x}+2004)>=2004`

`=>(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x})>=2004`

`=>(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}))/(1+\sqrt{1-\sqrt{x}})>=1002>0`

`=>\sqrt{x}=0`

`=>x=0`

Vậy `S={0}`

NV
27 tháng 2 2021

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow x=\left(2004+\sqrt{x}\right)\left(\dfrac{\sqrt{x}}{1+\sqrt{1-\sqrt{x}}}\right)^2\)

\(\Leftrightarrow x=\dfrac{x\left(2004+\sqrt{x}\right)}{2-\sqrt{x}+2\sqrt{1-\sqrt{x}}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{2004+\sqrt{x}}{2-\sqrt{x}+2\sqrt{1-\sqrt{x}}}=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2004+\sqrt{x}=2-\sqrt{x}+2\sqrt{1-\sqrt{x}}\)

\(\Leftrightarrow1001+\sqrt{x}=\sqrt{1-\sqrt{x}}\)

\(VT\ge1001\) ; \(VP\le1\) nên (1) vô nghiệm

NV
17 tháng 9 2022

a/ ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\Leftrightarrow x+1-\sqrt{2x+2}+\sqrt{2x-1}-1=0\)

\(\Leftrightarrow\frac{x^2+2x+1-2x-2}{x+1+\sqrt{2x+2}}+\frac{2x-1-1}{\sqrt{2x-1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{x+1}{x+1+\sqrt{2x+2}}+\frac{2}{\sqrt{2x-1}+1}\right)=0\)

\(\Rightarrow x=1\)

2/ ĐKXĐ:\(\left[{}\begin{matrix}x=0\\x\ge2\\x\le-3\end{matrix}\right.\)

- Nhận thấy \(x=0\) là 1 nghiệm

- Với \(x\ge2\):

\(\Leftrightarrow\sqrt{x-1}+\sqrt{x-2}=2\sqrt{x+3}=\sqrt{4x+12}\)

Ta có \(VT\le\sqrt{2\left(x-1+x-2\right)}=\sqrt{4x-6}< \sqrt{4x+12}\)

\(\Rightarrow VT< VP\Rightarrow\) pt vô nghiệm

- Với \(x\le-3\)

\(\Leftrightarrow\sqrt{1-x}+\sqrt{2-x}=2\sqrt{-x-3}\)

\(\Leftrightarrow3-2x+2\sqrt{x^2-3x+2}=-4x-12\)

\(\Leftrightarrow2\sqrt{x^2-3x+2}=-2x-15\) (\(x\le-\frac{15}{2}\))

\(\Leftrightarrow4x^2-12x+8=4x^2+60x+225\)

\(\Rightarrow x=-\frac{217}{72}\left(l\right)\)

Vậy pt có nghiệm duy nhất \(x=0\)

NV
17 tháng 9 2022

Bài 3: ĐKXĐ: \(-3\le x\le6\)

Đặt \(\sqrt{3+x}+\sqrt{6-x}=t\) \(\Rightarrow3\le t\le3\sqrt{2}\)

\(t^2=9+2\sqrt{\left(3+x\right)\left(6-x\right)}\Rightarrow-\sqrt{\left(3+x\right)\left(6-x\right)}=\frac{9-t^2}{2}\)

Phương trình trở thành:

\(t+\frac{9-t^2}{2}=m\Leftrightarrow-t^2+2t+9=2m\) (2)

a/ Với \(m=3\Rightarrow t^2-2t-3=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=3\end{matrix}\right.\)

\(\Rightarrow\sqrt{3+x}+\sqrt{6-x}=3\)

\(\Leftrightarrow2\sqrt{\left(3+x\right)\left(6-x\right)}=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)

b/ Xét hàm \(f\left(t\right)=-t^2+2t+9\) trên \(\left[3;3\sqrt{2}\right]\)

\(-\frac{b}{2a}=1< 3\Rightarrow\) hàm số nghịch biến trên \(\left[3;3\sqrt{2}\right]\)

\(f\left(3\right)=6\) ; \(f\left(3\sqrt{2}\right)=6\sqrt{2}-9\)

\(\Rightarrow6\sqrt{2}-9\le2m\le6\Rightarrow\frac{6\sqrt{2}-9}{2}\le m\le3\)

Bài 4 làm tương tự bài 3

18 tháng 9 2017

ĐKXĐ: \(-1\le x\le8\) Đặt \(t=\sqrt{x+1}+\sqrt{8-x}\) ( Với \(t\ge0\))

\(\Rightarrow t^2=9+2\sqrt{\left(x+1\right)\left(8-x\right)}\)\(\Rightarrow\sqrt{\left(x+1\right)\left(8-x\right)}=\dfrac{t^2-9}{2}\)

\(\Rightarrow t+\dfrac{t^2-9}{2}=3\Rightarrow t^2+2t-15=0\)\(\Rightarrow\left(t+5\right)\left(t-3\right)=0\)

\(\left[{}\begin{matrix}t=-5\left(Loai\right)\\t=3\end{matrix}\right.\Rightarrow t=3\)

\(\Rightarrow3+\sqrt{\left(x+1\right)\left(8-x\right)}=3\) \(\Rightarrow\sqrt{\left(x+1\right)\left(8-x\right)}=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=8\end{matrix}\right.\) Thỏa mãn điều kiện .

20 tháng 11 2022

Bài 1:

a: TH1: m=-2

Pt sẽ là \(-2\left(-2-1\right)x-2-2=0\)

=>2x-4=0

=>x=2

TH2: m<>-2

\(\text{Δ}=\left(2m-2\right)^2-4\left(m+2\right)\left(m-2\right)\)

\(=4m^2-8m+4-4\left(m^2-4\right)\)

=4m^2-8m+4-4m^2+16=-8m+20

Để phương trình vô nghiệm thì -8m+20<0

=>-8m<-20

=>m>5/2

Để phương trình có nghiệm duy nhất thì -8m+20=0

=>m=5/2

Để phương trình có hai nghiệm phân biệt thì -8m+20>0

=>m<5/2

16 tháng 11 2017

b) Đặt \(u=\sqrt{1-x}\); \(v=\sqrt{1+x}\)

phương trình trở thành

\(2u-v+3uv=u^2+2\)\(\Rightarrow u^2-2u+v-3uv+2=0\)

lại có \(u^2+v^2=2\)

\(\Rightarrow u^2-2u-3uv+v+u^2+v^2=0\)

\(\Rightarrow\left(u-v-1\right)\left(2u-v\right)=0\)

đến đây thì easy rồi

16 tháng 11 2017

a)

Đặt \(\sqrt{2x+1}=t\) ;\(\sqrt{x}=k\)

Phương trình trở thành

\(\left(3k^2+t^2\right)t-\left(3t^2+k^2\right)k-1=0\)

\(\Leftrightarrow3k^2t+t^3-3t^2k-k^3-1=0\)

\(\Leftrightarrow\left(t-k\right)\left(t^2+kt+k^2\right)-3tk\left(t-k\right)-1=0\)

\(\Leftrightarrow\left(t-k\right)^3-1=0\)

\(\Leftrightarrow\left(t-k-1\right)\left(\left(t-k\right)^2+t-k+1\right)=0\)

do t > k => t - k > 0

\(\Rightarrow\left(t-k\right)^2+t-k+1>0\)

\(\Rightarrow t-k-1=0\)

\(\Leftrightarrow t=1+k\)\(\Leftrightarrow\sqrt{2x+1}=1+\sqrt{x}\)

\(\Leftrightarrow2x+1=x+2\sqrt{x}+1\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

END

2 tháng 11 2019

Akai Haruma

29 tháng 11 2019

Nguyễn Việt Lâm

7 tháng 4 2017

lời giải

a)

\(\left(x+1\right)\left(2x-1\right)+x\le2x^2+3\)

\(\Leftrightarrow2x^2+x-1+x\le2x^2+3\)

\(\Leftrightarrow2x\le4\Rightarrow x\le2\)

\(\)b) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)

\(\left(x^2+3x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)

\(x^3+3x^2+3x^2+9x+2x+6-x>x^3+6x^2-5\)

\(10x+6>-5\Rightarrow x>-\dfrac{11}{10}\)

8 tháng 5 2017

c)Đkxđ: x0x\ge0
x+x>(2x+3)(x1)x+\sqrt{x}>\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)
x+x>2x+x3\Leftrightarrow x+\sqrt{x}>2x+\sqrt{x}-3
x3>0\Leftrightarrow x-3>0
x>3\Leftrightarrow x>3. (tmđk).
 

27 tháng 11 2021

\(a,ĐK:1\le x\le3\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\\\sqrt{3-x}=b\end{matrix}\right.\left(a,b\ge0\right)\)

\(PT\Leftrightarrow a+b-ab=1\Leftrightarrow a+b-ab-1=0\\ \Leftrightarrow\left(a-1\right)\left(1-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=1\\3-x=1\end{matrix}\right.\Leftrightarrow x=2\left(tm\right)\)

\(b,ĐK:0\le x\le9\\ PT\Leftrightarrow9+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\\ \Leftrightarrow2\sqrt{-x^2+9x}-\left(-x^2+9x\right)=0\\ \Leftrightarrow\sqrt{-x^2+9x}\left(2-\sqrt{-x^2+9x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\\x^2-9x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(n\right)\\x=9\left(n\right)\\x=\dfrac{9+\sqrt{65}}{2}\left(n\right)\\x=\dfrac{9-\sqrt{65}}{2}\left(n\right)\end{matrix}\right.\)

 

AH
Akai Haruma
Giáo viên
15 tháng 7 2017

Lời giải:

Áp dụng BĐT AM-GM:

\(\sqrt{x-2}=\sqrt{(x-2).1}\leq \frac{x-2+1}{2}\)

\(\sqrt{y+2009}=\sqrt{(y+2009).1}\leq \frac{y+2009+1}{2}\)

\(\sqrt{z-2010}=\sqrt{(z-2010).1}\leq \frac{z-2010+1}{2}\)

Cộng theo vế suy ra :

\(\sqrt{x-2}+\sqrt{y+2009}+\sqrt{z-2010}\leq \frac{x+y+z}{2}\)

Dấu bằng xảy ra khi \(x-2=y+2009=z-2010=1\Leftrightarrow \left\{\begin{matrix} x=3\\ y=-2008\\ z=2011\end{matrix}\right.\)