Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\sqrt{\left(x+3\right)\left(x+7\right)}=3\sqrt{x+3}+2\sqrt{x+7}-6\)
\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x+7\right)}-3\sqrt{x+3}-2\sqrt{x+7}+6=0\)
\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x+7}-3\right)-2\left(\sqrt{x+7}-3\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+7}-3\right)\left(\sqrt{x+3}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+7}-3=0\\\sqrt{x+3}-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+7}=3\\\sqrt{x+3}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Vậy...
2. \(2x^2+2x+1=\sqrt{4x+1}\)
\(\Leftrightarrow2x^2+2x+1-\sqrt{4x+1}=0\)
\(\Leftrightarrow4x^2+4x+2-2\sqrt{4x+1}=0\)
\(\Leftrightarrow4x+1-2\sqrt{4x+1}+1+4x^2=0\)
\(\Leftrightarrow\left(\sqrt{4x+1}-1\right)^2+4x^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{4x+1}=1\\2x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}4x+1=1\\x=0\end{matrix}\right.\)\(\Leftrightarrow x=0\)
Vậy...
3. \(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}=\frac{x+3}{2}\)
\(\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}=\frac{x+3}{2}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}=\frac{x+3}{2}\)
\(\Leftrightarrow\left|\sqrt{x-1}-1\right|+\sqrt{x-1}+1=\frac{x+3}{2}\)
Đặt \(\sqrt{x-1}=a\)
\(\Leftrightarrow x-1=a^2\Leftrightarrow x+3=a^2+4\)
\(pt\Leftrightarrow\left|a-1\right|+a+1=\frac{a^2+4}{2}\)
+) Xét \(a\le1\Leftrightarrow a-1\le0\Leftrightarrow1\le x\le2\)
\(pt\Leftrightarrow1-a+a+1=\frac{a^2+4}{2}\)
\(\Leftrightarrow2=\frac{a^2+4}{2}\)
\(\Leftrightarrow a^2+4=4\)
\(\Leftrightarrow a=0\)
\(\Leftrightarrow\sqrt{x-1}=0\)
\(\Leftrightarrow x=1\) ( thỏa )
+) Xét \(a\ge1\Leftrightarrow a-1\ge0\Leftrightarrow x>2\)
\(pt\Leftrightarrow a-1+a+1=\frac{a^2+3}{2}\)
\(\Leftrightarrow2a=\frac{a^2+3}{2}\)
\(\Leftrightarrow a^2+3=4a\)
\(\Leftrightarrow a^2-4a+3=0\)
\(\Leftrightarrow\left(a-1\right)\left(a-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(loai\right)\\x=10\left(thoa\right)\end{matrix}\right.\)
Vậy...
\(x^2+\left(3-\sqrt{x^2+2}\right)x=1+2\sqrt{x^2+2}\)
\(pt\Leftrightarrow x^2+3x-1-x\sqrt{x^2+2}=2\sqrt{x^2+2}\)
\(\Leftrightarrow x^2-7-\left(x\sqrt{x^2+2}-3x\right)=2\sqrt{x^2+2}-6\)
\(\Leftrightarrow x^2-7-\dfrac{x^2\left(x^2+2\right)-9x^2}{x\sqrt{x^2+2}+3x}=\dfrac{4\left(x^2+2\right)-36}{2\sqrt{x^2+2}+6}\)
\(\Leftrightarrow x^2-7-\dfrac{x^4-7x^2}{x\sqrt{x^2+2}+3x}-\dfrac{4x^2-28}{2\sqrt{x^2+2}+6}=0\)
\(\Leftrightarrow x^2-7-\dfrac{x^2\left(x^2-7\right)}{x\sqrt{x^2+2}+3x}-\dfrac{4\left(x^2-7\right)}{2\sqrt{x^2+2}+6}=0\)
\(\Leftrightarrow\left(x^2-7\right)\left(1-\dfrac{x^2}{x\sqrt{x^2+2}+3x}-\dfrac{4}{2\sqrt{x^2+2}+6}\right)=0\)
Dễ thấy: \(1-\dfrac{x^2}{x\sqrt{x^2+2}+3x}-\dfrac{4}{2\sqrt{x^2+2}+6}>0\)
\(\Rightarrow x^2-7=0\Rightarrow x=\pm\sqrt{7}\)
TXD x>= b, x<=a : x khác a=b
Đặt (a-x) = A, (x-b) = B
Vế phải = (a-x+x - b)/2 = (A + B)/2
2 x (A\(\sqrt[4]{B}\)+ B\(\sqrt[4]{A}\))= (A+B) (\(\sqrt[4]{A}\)+ \(\sqrt[4]{B}\))
= A\(\sqrt[4]{A}\)+ B\(\sqrt[4]{A}\)+ B\(\sqrt[4]{B}\)+A\(\sqrt[4]{B}\)
A\(\sqrt[4]{B}\)+ B\(\sqrt[4]{A}\)= A\(\sqrt[4]{A}\)+ B\(\sqrt[4]{B}\)
\(\sqrt[4]{B}\)(A-B) = \(\sqrt[4]{A}\)(A-B)
=> A = B => a-x = x-b => x = (a+b)/2 (a khác b)
Lời giải:
ĐKXĐ: $x\geq -1$
PT \(\Leftrightarrow x(\sqrt{x+1}-2)+(x+5)(\sqrt{x+6}-3)=x^2-9\)
\(\Leftrightarrow x.\frac{x-3}{\sqrt{x+1}+2}+(x+5).\frac{x-3}{\sqrt{x+6}+3}-(x-3)(x+3)=0\)
\(\Leftrightarrow (x-3)\left[\frac{x}{\sqrt{x+1}+2}+\frac{x+5}{\sqrt{x+6}+3}-(x+3)\right]=0\)
Ta sẽ cm pt chỉ có nghiệm $x=3$ bằng cách chỉ ra biểu thức trong ngoặc vuông luôn âm.
Nếu $-1\leq x< 0$ thì:
\(\frac{x}{\sqrt{x+1}+2}+\frac{x+5}{\sqrt{x+6}+3}-(x+3)< \frac{x+5}{\sqrt{x+6}+3}-(x+3)< \frac{x+5}{3}-(x+3)=\frac{-2(x+4)}{3}< 0\)
Nếu $x\geq 0$ thì:
\(\frac{x}{\sqrt{x+1}+2}+\frac{x+5}{\sqrt{x+6}+3}-(x+3)\leq \frac{x}{2}+\frac{x+5}{3}-(x+3)=\frac{-(x+8)}{6}<0\)
Vậy........