Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\Leftrightarrow\left(2x+1\right)\sqrt{2x^2+4x+5}-\left(2x+1\right)\left(x+3\right)+x^2-2x-4=0\)
\(\Leftrightarrow\left(2x+1\right)\left(\sqrt{2x^2+4x+5}-\left(x+3\right)\right)+x^2-2x-4=0\)
\(\Leftrightarrow\dfrac{\left(2x+1\right)\left(x^2-2x-4\right)}{\sqrt{2x^2+4x+5}+x+3}+x^2-2x-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\\dfrac{2x+1}{\sqrt{2x^2+4x+5}+x+3}+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x+1+\sqrt{2x^2+4x+5}+x+3=0\)
\(\Leftrightarrow\sqrt{2x^2+4x+5}=-3x-4\) \(\left(x\le-\dfrac{4}{3}\right)\)
\(\Leftrightarrow2x^2+4x+5=9x^2+24x+16\)
\(\Leftrightarrow7x^2+20x+11=0\)
2.
ĐKXĐ: ...
\(\Leftrightarrow2x\sqrt{2x+7}+7\sqrt{2x+7}=x^2+2x+7+7x\)
\(\Leftrightarrow\left(x^2-2x\sqrt{2x+7}+2x+7\right)+7\left(x-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)^2+7\left(x-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)\left(x+7-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2x+7}\\x+7=\sqrt{2x+7}\end{matrix}\right.\)
\(\Leftrightarrow...\)
ĐKXĐ:...
a. Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+4x+16}=a>0\\\sqrt{x+70}=b\ge0\end{matrix}\right.\)
\(\Rightarrow6x^2+10x-92=3a^2-2b^2\)
Pt trở thành:
\(3a^2-2b^2+ab=0\)
\(\Leftrightarrow\left(a+b\right)\left(3a-2b\right)=0\)
\(\Leftrightarrow3a=2b\)
\(\Leftrightarrow9\left(2x^2+4x+16\right)=4\left(x+70\right)\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\)
Phương trình trở thành:
\(a^2+2+ab=3a+b\)
\(\Leftrightarrow a^2-3a+2+ab-b=0\)
\(\Leftrightarrow\left(a-1\right)\left(a-2\right)+b\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(a+b-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+b=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}+\sqrt{1-x}=2\end{matrix}\right.\)
\(\Leftrightarrow...\)
ĐKXĐ: \(x\ge\frac{1}{2}\)
Bình phương hai vế rồi rút gọn, ta được:
\(9x^4-32x^3-70x^2+8x+85=0\)
⇒ \(\left(x-5\right)\left(x-1\right)\left(9x^2+22x+17\right)=0\)
⇒\(\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
Vì biểu thức ở cả hai vế chưa chắc ≥ 0 nên thử lại, ta thấy chỉ có \(x=5\) thỏa mãn.
ĐKXĐ: \(x\ge\frac{1}{2}\)
\(\Leftrightarrow3x^2-10x-25+6\left(x+3\right)-2\left(x+3\right)\sqrt{2x-1}=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x+5\right)+2\left(x+3\right)\left[3-\sqrt{2x-1}\right]=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x+5\right)-\frac{4\left(x+3\right)\left(x-5\right)}{3+\sqrt{2x-1}}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3x+5=\frac{4\left(x+3\right)}{3+\sqrt{2x-1}}\left(1\right)\end{matrix}\right.\)
Xét (1) \(\Leftrightarrow\left(3x+5\right)\left(3+\sqrt{2x-1}\right)=4x+12\)
\(\Leftrightarrow\left(3x+5\right)\sqrt{2x-1}=-3-5x\)
Do \(x\ge\frac{1}{2}\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) \(\Rightarrow ptvn\)
Vậy pt có nghiệm duy nhất \(x=5\)