Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x=0 ko là nghiệm
chia cả hai vê cho x<>0, ta được:
\(x-\dfrac{1}{x}+\sqrt[3]{x-\dfrac{1}{x}}=2\)
Đặt \(\sqrt[3]{x-\dfrac{1}{x}}=a\)
=>a^3+a=2
=>a=1
=>x-1/x=1
=>\(x=\dfrac{1\pm\sqrt{5}}{2}\)
a) \(2x^2-5x+1=0\)
\(\Delta=b^2-4ac\Rightarrow\left(-5\right)^2-4.2.1=17>0\)
Phương trình có 2 nghiệm phân biệt:
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)+\sqrt{17}}{2.2}=\dfrac{5+\sqrt{17}}{4}\)
\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)-\sqrt{17}}{2.2}=\dfrac{5-\sqrt{17}}{4}\)
___________________________________________________
b) \(4x^2+4x+1=0\)
\(\Delta=b^2-4ac\Rightarrow4^2-4.4.1=0\)
Vậy phương trình có nghiệm kép:
___________________________________________________
c) \(5x^2-x+2=0\)
\(\Delta=b^2-4a\Rightarrow\left(-1\right)^2-4.5.2=-39\)
Vậy phương trình vô nghiệm.
\(Đk:x\ge\dfrac{3}{2}\Rightarrow x>0\)
\(x^3-4x^2+5x-1-\sqrt{2x-3}=0\)
\(\Leftrightarrow2x^3-8x^2+10x-2-2\sqrt{2x-3}=0\)
\(\Leftrightarrow\left(2x^3-8x^2+8x\right)+\left[\left(2x-3\right)-2\sqrt{2x-3}+1\right]=0\)
\(\Leftrightarrow2x\left(x-2\right)^2+\left(\sqrt{2x-3}-1\right)^2=0\)
Ta có: \(\left\{{}\begin{matrix}2x\left(x-2\right)^2\ge0\left(x>0\right)\\\left(\sqrt{2x-3}-1\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow2x\left(x-2\right)^2+\left(\sqrt{2x-3}-1\right)^2\ge0\)
Do đó: \(\left\{{}\begin{matrix}2x\left(x-2\right)^2=0\\\left(\sqrt{2x-3}-1\right)^2=0\end{matrix}\right.\Leftrightarrow x=2\)
Thử lại ta có x=2 là nghiệm duy nhất của phương trình đã cho.
x^3-4x^2+5x-1-căn 2x-3=0
=>\(x^3-4x^2+5x-2-\left(\sqrt{2x-3}-1\right)=0\)
=>\(\left(x-1\right)\left(x-2\right)^2-\dfrac{2x-3-1}{\sqrt{2x-3}+1}=0\)
=>\(\left(x-2\right)\left[\left(x-1\right)\left(x-2\right)-\dfrac{2}{\sqrt{2x-3}+1}\right]=0\)
=>x-2=0
=>x=2
\(\Leftrightarrow\left(2x^2-x-1\right)^2-3=4x^2-2x-2+4\)
\(\Leftrightarrow\left(2x^2-x-1\right)^2-2\left(2x^2-x-1\right)-7=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-x-1=1+2\sqrt{2}\\2x^2-x-1=1-2\sqrt{2}\end{matrix}\right.\Leftrightarrow x\in\left\{1.82;-1.32\right\}\)