K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

Phương trình viết lại  m + 1 x = 3 m 2 - 1 x = 1 - m

Phương trình đã cho có nghiệm duy nhất khi  3 m 2 - m - 2 ≠ 0 ⇔ m ≠ 1 m ≠ − 2 3

Do m Z và m [−5; 10]  m {−5; −4; −3; −2; −1; 0; 2; 3; 4; 5; 6; 7; 8; 9; 10}.

Do đó, tổng các phần tử trong S bằng 39.

Đáp án cần chọn là: B

29 tháng 5 2017

x − m x + 1 = x − 2 x − 1 ⇔ x ≠ ± 1 m x = m + 2

Phương trình đã cho có nghiệm ⇒ m ≠ 0 x = 1 + 2 m ≠ ± 1 ⇔ m ≠ 0 m ≠ 1

Vì m Z, m [−3; 5] nên m S = {−3; −2; 1; 2; 3; 4; 5}.

Đáp án cần chọn là: D

AH
Akai Haruma
Giáo viên
22 tháng 12 2022

Lời giải:

$f(x)=m^2(x^4-1)+m(x^2-1)-6(x-1)=(x-1)[m^2(x+1)(x^2+1)+m(x+1)-6]$

Để $f(x)\geq 0$ với mọi $x\in\mathbb{R}$ thì:
$m^2(x+1)(x^2+1)+m(x+1)-6=Q(x)(x-1)^k$ với $k$ là số lẻ

$\Rightarrow h(x)=m^2(x+1)(x^2+1)+m(x+1)-6\vdots x-1$

$\Rightarrow h(1)=0$

$\Leftrightarrow 4m^2+2m-6=0$

$\Leftrightarrow 2m^2+m-3=0$

$\Leftrightarrow (m-1)(2m+3)=0\Rightarrow m=1$ hoặc $m=\frac{-3}{2}$

Thay các giá trị trên vào $f(x)$ ban đầu thì $m\in \left\{1; \frac{-3}{2}\right\}$

Tổng các giá trị của các phần tử thuộc $S$: $1+\frac{-3}{2}=\frac{-1}{2}$

11 tháng 4 2019

Phương trình có nghiệm khi  ∆ = m 2 - 144 ≥ 0 ⇔ m 2 ≥ 12 2 ⇔ m ≥ 12 m ≤ − 12

Do đó tổng các phần tử trong tập S bằng 0

Đáp án cần chọn là: D

31 tháng 12 2021

Chọn C

28 tháng 12 2018

Đáp án D

NV
21 tháng 4 2021

\(\Leftrightarrow\left(x-y+m\right)^2+y^2+2\left(m+1\right)y-m^2+25\ge0\)\(\forall x;y\)

\(\Leftrightarrow y^2+2\left(m+1\right)y-m^2+25\ge0\) ;\(\forall y\)

\(\Leftrightarrow\Delta'=\left(m+1\right)^2-\left(-m^2+25\right)\le0\)

\(\Leftrightarrow m^2+m-12\le0\Rightarrow-4\le m\le3\)

21 tháng 4 2021

làm sao nhẩm được phần (x-y+m)^2 vậy anh