K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD có

M,Q lần lượt là tđiểm của AB và AD

nên MQ là đường trung bình

=>MQ//BD và MQ=BD/2(1)

Xét ΔBCD có

N,P lần lượt là trung điểm của CB và CD

nên NP là đường trung bình

=>NP//BD và NP=BD/2(2)

Xét ΔABC có

M,N lần lượt là trung điểm của BA và BC

nên MN là đường trung bình

=>MN=AC/2

Từ (1) và (2) suy ra MNPQ là hình bình hành

b: \(C_{MNPQ}=MN+PQ+MQ+PN\)

\(=\dfrac{AC}{2}+\dfrac{AC}{2}+\dfrac{BD}{2}+\dfrac{BD}{2}\)

=AC+BD

20 tháng 12 2020

ai giup mik voi 

 

 

 

a: Xét ΔBAD có

M,Q lần lượt là tđiểm của AB và AD

nên MQ là đường trung bình

=>MQ//BD và MQ=BD/2(1)

Xét ΔBCD có

N,P lần lượt là trung điểm của CB và CD

nên NP là đường trung bình

=>NP//BD và NP=BD/2(2)

Từ (1) và (2) suy a MQ//NP và MQ=NP

=>MNPQ là hình bình hành

b: Xét ΔABC có

M,N lần lượt là trung điểm của BA và BC

nên MN là đường trung bình

=>MN=AC/2 và MN//AC

Để MNPQ là hình chữ nhật thì MN vuông góc với MQ

=>AC vuông góc với BD

25 tháng 10 2021

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của BC

Do đó:MN là đường trung bình của ΔBAC

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\left(1\right)\)

Xét ΔACD có 

P là trung điểm của CD

Q là trung điểm của DA

Do đó: PQ là đường trung bình của ΔACD

Suy ra: PQ//AC và \(PQ=\dfrac{AC}{2}\left(2\right)\)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

hay MNPQ là hbh

18 tháng 12 2022

a: Xét ΔABD có AM/AB=AQ/AD

nên MQ//BD và MQ=BD/2

Xét ΔCBD có CN/CB=CP/CD

nên NP//BD và NP=BD/2

=>MQ//PN và MQ=PN

=>MNPQ là hình bình hành

Xét ΔBAC có BM/BA=BN/BC

nên MN//AC và MN=AC/2

=>MN vuông góc với NP

=>MNPQ là hình chữ nhật

b: Để MNPQ là hình vuông thì MN=NP

=>AC=BD

a: Xét ΔABD có 

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

P là trung điểm của CD

N là trung điểm của BC

Do đó: PN là đường trung bình của ΔABD

Suy ra: PN//BD và \(PN=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra MQ//PN và MQ=PN

hay MNPQ là hình bình hành

5 tháng 1 2022

Xét tam giác ABC có:

+ M là trung điểm của AB (gt).

+ N là trung điểm của BC (gt).

\(\Rightarrow\) MN là đường trung bình.

\(\Rightarrow\) MN // AC và MN = \(\dfrac{1}{2}\) AC (Tính chất đường trung bình trong tam giác). (1)

Xét tam giác ADC có:

+ Q là trung điểm của DA (gt).

+ P là trung điểm của CD (gt).

\(\Rightarrow\) QP là đường trung bình.

\(\Rightarrow\) QP // AC và QP = \(\dfrac{1}{2}\) AC (Tính chất đường trung bình trong tam giác). (2)

Từ (1); (2) \(\Rightarrow\) MN // QP và MN = QP.

Xét tứ giác MNPQ:

+  MN // QP (cmt).

+ MN = QP (cmt).

\(\Rightarrow\) Tứ giác MNPQ là hình bình hành (dhnb).

 

5 tháng 1 2022

ABC là tứ giác à?

a: Xét ΔABD có 

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và MQ=BD/2(1)

Xét ΔBCD có 

N là trung điểm của BC

P là trung điểm của CD

Do đó: NP là đường trung bình của ΔBCD

Suy ra: NP//BD và NP=BD/2(2)

Từ (1) và (2) suy ra MQ//NP và MQ=NP

hay MQPN là hình bình hành