Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
You have to draw the geometry yourself.
\(A_{ABCD}=AB.AD=12.6=72\left(cm^2\right)\)
M is the midpoint of segment BC so we have: \(BM=MC=\frac{BC}{2}=\frac{6}{2}=3\left(cm\right)\)
For the midpoint of CD is N, we also have: \(DN=NC=\frac{CD}{2}=\frac{12}{2}=6\left(cm\right)\)
We have:
\(A_{AMN}=A_{ABCD}-\left(A_{ABM}+A_{NCM}+A_{ADN}\right)\\ =72-\left(\frac{1}{2}.AB.BM+\frac{1}{2}.NC.MC+\frac{1}{2}AD.DN\right)\\ =72-\left(\frac{1}{2}.12.3+\frac{1}{2}.6.3+\frac{1}{2}.6.6\right)\\ =72-45\\ =27\left(cm^2\right)\)
Thusly, the area of triangle AMN in square centimeters is 27.
Dịch: Cho ABCD là HCN có AB = 12cm, AD = 6 cm. M và N lần lượt là trung điểm của các cạnh BC và CD. Tính diện tích tam giác AMN với đơn vị cm2.
SABCD = \(AB\cdot AD=12\cdot6=72\left(cm^2\right)\)
SADN = \(\frac{AD\cdot DN}{2}=\frac{AD\cdot\frac{1}{2}CD}{2}=\frac{AD\cdot\frac{1}{2}AB}{2}=\frac{6\cdot\frac{1}{2}12}{2}=18\left(cm^2\right)\)
SABM = \(\frac{AB\cdot BM}{2}=\frac{AB\cdot\frac{1}{2}BC}{2}=\frac{AB\cdot\frac{1}{2}AD}{2}=\frac{12\cdot\frac{1}{2}6}{2}=18\left(cm^2\right)\)
SMNC = \(\frac{MC\cdot NC}{2}=\frac{\frac{1}{2}BC\cdot\frac{1}{2}CD}{2}=\frac{\frac{1}{2}AD\cdot\frac{1}{2}AB}{2}=\frac{\frac{1}{2}6\cdot\frac{1}{2}12}{2}=9\left(cm^2\right)\)
SABCD = SADN + SABM + SMNC + SAMN
\(\Leftrightarrow\)SAMN = SABCD - SADN - SABM - SMNC
\(\Rightarrow\) SAMN = 72 - 18 - 18 - 9
= 27 (cm2)
Chu vi của một hình chữ nhật là 34 cm. Nếu chiều dài của nó đang gia tăng 5 cm và chiều rộng của nó được tăng 3 cm sau đó khu vực này đang tăng lên 80. Tìm diện tích ban đầu của hình chữ nhật.
Trả lời: Diện tích ban đầu của hình chữ nhật là ........ cm2
Chu vi của một hình chữ nhật là 34 cm. Nếu chiều dài của nó đang gia tăng 5 cm và chiều rộng của nó được tăng 3 cm sau đó khu vực này đang tăng lên 80. Tìm diện tích ban đầu của hình chữ nhật.
Trả lời: Diện tích ban đầu của hình chữ nhật là ........ cm2
M is a point on QR such that \(MT\perp QR\) \(\Rightarrow MT=RS\)
We have: \(S_{PQRS}=RS.QR=MT.QR\)
and \(S_{QTR}=\frac{1}{2}MT.QR\Rightarrow S_{PQRS}=2.S_{QTR}\)
Otherwise, \(S_{QRT}=\frac{1}{2}QT.RT=4\left(cm^2\right)\Rightarrow S_{PQRS}=8\left(cm^2\right)\)
the length of the diagonal is 26 centimeters
k cho mình nha cảm ơn
chuẩn
cam on ban!