K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
23 tháng 11 2014
Đầu bài nói là p và p+4 là các số nguyên tố sao lại chứng minh p là hợp số ???? Sai đề à bạn !
VT
5
27 tháng 2 2016
Nếu có một số chia hết cho 7 thì số đó nhân lên bao nhiêu cũng chia hết cho 7
Mà m2=m.m; n2=n.n nên m và n cũng chia hết cho 7
Vậy m và n chia hết cho 7
đặt n = 3k+r (với r = 0, 1, 2)
2^n = 2^(3k+r) = 8^k.2^r
8 chia 7 dư 1 nên 8^k chia 7 dư 1
* nếu r = 0 => 2^n = 8^k chia 7 dư 1 => 2^n + 1 chia 7 dư 2
* nếu r = 1 => 2^n = 8^k.2 chia 7 dư 2 => 2^n + 1 chia 7 dư 3
* nếu r = 2 => 2^n = 8^k.4 chia 7 dư 4 => 2^n + 1 chia 7 dư 5
tóm lại 2^n không chia hết cho 7 với mọi n thuộc N
tick mình lên 50 với nhaaaaaaaa
2n + 1 = 2n + 1n = (2 + 1)n chia hết cho 3 với mọi n thuộc N
=> (2 + 1)n chỉ chia hết cho 3 và không chia hết cho 7
=> điều phải chứng minh