K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2016

 đặt n = 3k+r (với r = 0, 1, 2) 
2^n = 2^(3k+r) = 8^k.2^r 
8 chia 7 dư 1 nên 8^k chia 7 dư 1 
* nếu r = 0 => 2^n = 8^k chia 7 dư 1 => 2^n + 1 chia 7 dư 2 
* nếu r = 1 => 2^n = 8^k.2 chia 7 dư 2 => 2^n + 1 chia 7 dư 3 
* nếu r = 2 => 2^n = 8^k.4 chia 7 dư 4 => 2^n + 1 chia 7 dư 5 
tóm lại 2^n không chia hết cho 7 với mọi n thuộc N 

tick mình  lên 50 với nhaaaaaaaa

17 tháng 1 2016

2n + 1 = 2+ 1n = (2 + 1)n chia hết cho 3 với mọi n thuộc N

=> (2 + 1)chỉ chia hết cho 3 và không chia hết cho 7

=> điều phải chứng minh

 

23 tháng 11 2014

Đầu bài nói là p và p+4 là các số nguyên tố sao lại chứng minh p là hợp số ???? Sai đề à bạn !
 

18 tháng 9 2021

k đi hứa gòi

18 tháng 9 2021

a=0 nhé bạn

27 tháng 2 2016

Nếu có một số chia hết cho 7 thì số đó nhân lên bao nhiêu cũng chia hết cho 7

Mà m2=m.m; n2=n.n nên m và n cũng chia hết cho 7

Vậy m và n chia hết cho 7