Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
a) \(2\left|x-1\right|-8=0\)
\(\Leftrightarrow2\left|x-1\right|=8\)
\(\Leftrightarrow\left|x-1\right|=4\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=4\\x-1=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}\)
b) \(-\left|2x+3\right|+3=6\)
\(\Leftrightarrow\left|2x+3\right|=-3\)
Mà \(\left|2x+3\right|\ge0>-3\left(\forall x\right)\)
=> Mâu thuẫn
=> Không tồn tại x thỏa mãn
a) Ta có 2|x - 1| - 8 = 0
=> 2|x - 1| = 8
=> |x - 1| = 4
=> \(\orbr{\begin{cases}x-1=4\\x-1=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}}\)
b) Ta có : -|2x + 3| + 3 = 6
=> -|2x + 3| = 3
=> |2x + 3| = -3
Vì \(\left|2x+3\right|\ge0\forall x\)
mà -3 < 0
=> x \(\in\varnothing\)
\(\left|\frac{13}{4}-2x\right|=\frac{2}{5}+\frac{5}{2}=\frac{29}{10}\left(1\right)\)
+ Nếu \(\frac{13}{4}-2x\ge0\Leftrightarrow x\le\frac{13}{8}\)
\(\Rightarrow\left(1\right)\Leftrightarrow\frac{13}{4}-2x=\frac{29}{10}\Rightarrow x=\frac{7}{40}\) so với điều kiện \(x\le\frac{13}{8}\) nên thoả mãn
+ Nếu \(\frac{13}{4}-2x< 0\Leftrightarrow x>\frac{13}{8}\)
\(\Rightarrow\left(1\right)\Leftrightarrow2x-\frac{13}{4}=\frac{29}{10}\Leftrightarrow x=\frac{123}{40}\) so với điều kiện \(x>\frac{13}{8}=\frac{65}{40}\) nên thoả mãn
Ta có : \(-\left|x+1,2\right|\le0\forall x\)
Suy ra : \(A=-\left|x+1,2\right|+3,4\le3,4\forall x\)
Vậy \(A_{min}=3,4\) khi \(x=-1,2\)
Sorry bạn nhé bài đầu tiên bạn sửa chỗ min thành "max" nhé !
Ta có : \(\left|x+1,2\right|\ge0\forall x\)
Suy ra : B = \(\left|x+1,2\right|-3,4\ge-3,4\forall x\)
Vậy Bmin = -3,4 khi x = -1,2
(x+5)3 = -64= (-4)3
=> x + 5 = -4
x = -9
(x+5)3 = -64= (-4)3
=> x + 5 = -4
x = -9
#