K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2018

ĐK : \(\hept{\begin{cases}ax-1\ne0\\bx-1\ne0\\\left(a+b\right)x-1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}ax\ne1\\bx\ne1\\\left(a+b\right)x\ne1\end{cases}}}\)     (2) 

        Ta có thể viết phương trình dưới dạng : \(abx\left[\left(a+b\right)x-2\right]=0\)  (3) 

TH1 : a = b = 0 

Điều kiện 2 luôn đúng , khi có : 

(3) \(\Leftrightarrow0x=0\), phương trình nghiệm đúng \(\forall x\in R\)

TH2 : Nếu \(\hept{\begin{cases}a=0\\b\ne0\end{cases}}\)

Điều kiện (2) trở thành \(x\ne\frac{1}{b}\), khi đó : 

(3) \(\Leftrightarrow0x=0\),  phương trình nghiệm đúng với mọi \(x\ne\frac{1}{b}\)

TH3 : Nếu \(\hept{\begin{cases}a\ne0\\b\ne0\end{cases}}\)

Điều kiện (2) trở thành \(x\ne\frac{1}{a}\), khi đó : 

(3) \(\Leftrightarrow0x=0\),  phương trình nghiệm đúng với \(\forall x\ne\frac{1}{a}\)

TH4 : Nếu '\(\hept{\begin{cases}a\ne0\\a+b=0\end{cases}\Leftrightarrow b=-a\ne0}\)

Điều kiện (2) trở thành \(x\ne\frac{1}{a}\)và \(x\ne\frac{1}{b}\)

Khi đó : (3) \(\Leftrightarrow x=0\),  là nghiệm duy nhất của phương trình . 

TH5 : Nếu \(\hept{\begin{cases}a\ne0\\b\ne0\\a+b\ne0\end{cases}}\)

Điều kiện (2) trở thành \(x\ne\frac{1}{a}\)và \(x\ne\frac{1}{b}\)và \(x\ne\frac{1}{a+b}\Rightarrow\)(2) \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{a+b}\end{cases}}\)

Nghiệm \(x=\frac{2}{a+b}\)chỉ thỏa mãn đk khi a\(\ne\)

KL : ............

9 tháng 5 2017

a. \(m-2\ge\left(2m-1\right)x-3\Leftrightarrow m+1\ge\left(2m-1\right)x\)

Với \(2m-1=0\Rightarrow m=\frac{1}{2},bpt\Leftrightarrow\frac{3}{2}\ge0\) đúng với mọi x.

Với \(2m-1>0\Rightarrow m>\frac{1}{2},bpt\Leftrightarrow x\le\frac{m+1}{2m-1}\)

Với \(2m-1< 0\Rightarrow m< \frac{1}{2},bpt\Leftrightarrow x\ge\frac{m+1}{2m-1}\)

Với \(m>\frac{1}{2},\) S = ( \(-\infty;\frac{m+1}{2m-1}\)]

Vậy với \(m=\frac{1}{2}\Rightarrow S=R.\)

Với \(m< \frac{1}{2},\)S = [ \(\frac{m+1}{2m-1};+\infty\))

b. \(bpt\Leftrightarrow\frac{\left(ax+1\right)\left(a+1\right)-\left(ax-1\right)\left(a-1\right)}{a^2-1}>0\)

\(\Leftrightarrow\frac{2ax+2a}{a^2-1}>0\)

Với a > 1 thì \(a^2-1>0\Rightarrow ax+a>0\Rightarrow x+1>0\Rightarrow x>-1\forall a>1\)

Vậy với a > 1 thì bpt luôn có tập nghiệm \(S=\left(-1;+\infty\right)\)

15 tháng 6 2018

ĐKXĐ:\(\hept{\begin{cases}a,b\ne0\\x\ne b\\x\ne c\end{cases}}\)

Ta có:\(\frac{2}{a\left(b-x\right)}-\frac{2}{b\left(b-x\right)}=\frac{1}{a\left(c-x\right)}-\frac{1}{b\left(c-x\right)}\)

      \(\Leftrightarrow\frac{2}{b-x}\left(\frac{1}{a}-\frac{1}{b}\right)=\frac{1}{c-x}\left(\frac{1}{a}-\frac{1}{b}\right)\)

\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{b}\right)\left(\frac{2}{b-x}-\frac{1}{c-x}\right)=0\)

Nếu \(a=b\)thì phương trình đúng với mọi nghiệm x

Nếu \(a\ne b\)thì phương trình có nghiệm

\(\frac{2}{b-x}-\frac{1}{c-x}=0\)

\(\Leftrightarrow\frac{2\left(c-x\right)}{\left(c-x\right)\left(b-x\right)}-\frac{1\left(b-x\right)}{\left(c-x\right)\left(b-x\right)}=0\)

\(\Rightarrow2c-2x-b+x=0\)

\(\Leftrightarrow-x=b-2c\)

\(\Leftrightarrow x=2c-b\left(tmđkxđ\right)\)

Vậy ..............................................................................................

\(ĐK:x\ne\pm1\)

\(\Leftrightarrow\frac{ax^2-x+ax-1+bx-b}{x^2-1}=\frac{a\left(x^2+1\right)}{x^2-1}\)

\(\Leftrightarrow\frac{ax^2+x\left(a-1+b\right)-b-1}{x^2-1}=\frac{ax^2+a}{x^2-1}\)

\(\Leftrightarrow\hept{\begin{cases}x\ne\pm1\\a+b-1=0\\-b-1=a\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ne\pm1\\a+b-1=0\\-b-1=a\end{cases}}\)

Giải ra :D

Các bạn ơi ! Giúp mik với.....B1: Xác định m để phương trình sau có hai nghiệm , nghiệm này bằng hai lần nghiệm kia: \(^{x^2-2\left(m-2\right)x-4m=0}\)B2: Tìm m để phương trình sau có nghiệm âm: \(\frac{1-x}{m-1}-\frac{x+1}{1+m}=\frac{2x+5}{1-m^2}\left(m\ne\pm1\right)\)B3: Giải và biện luận phương trình: \(\frac{ax-1}{4}-\frac{2\left(x-a\right)}{3}=\frac{a+4}{6}\)B4: Cho a,b,c là ba cạnh của một tam giác chứng minh rằng : \(1<...
Đọc tiếp

Các bạn ơi ! Giúp mik với.....

B1: Xác định m để phương trình sau có hai nghiệm , nghiệm này bằng hai lần nghiệm kia: \(^{x^2-2\left(m-2\right)x-4m=0}\)

B2: Tìm m để phương trình sau có nghiệm âm: \(\frac{1-x}{m-1}-\frac{x+1}{1+m}=\frac{2x+5}{1-m^2}\left(m\ne\pm1\right)\)

B3: Giải và biện luận phương trình: \(\frac{ax-1}{4}-\frac{2\left(x-a\right)}{3}=\frac{a+4}{6}\)

B4: Cho a,b,c là ba cạnh của một tam giác chứng minh rằng : \(1< \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)
B5: Cho phương trình : \(\left(m^2-4\right)x+2=m\left(1\right)\)

       Với điều kiện nào của m thì phương trình (1) là một phương trình bậc nhất . Tìm nghiệm của phương trình trên với tham số là m.

 

Ai làm đúng thì mình tích cho nhé !!! Mik cân gấp các bạn nào có cách giải nào thì trả lời nhé !!!! Nghỉ Tết mà nhiều bài quá :)) :v 

0
9 tháng 2 2019

1/x - 1/a + 1/b = (1 -1 +1)/(x -a +b) = 1/(x-a+b)

OK CHỨ BẠN____CHÚC HOK TỐT

\(\frac{1}{a+b-x}+\frac{1}{x}=1+\frac{a+b}{ab}\Leftrightarrow\frac{x+a+b-x}{a+b-x}=\frac{a+b}{ab}\Leftrightarrow\left(a+b\right)\left(\frac{1}{x\left(a+b-x\right)}-\frac{1}{ab}\right)=0\Rightarrow x\left(a+b-x\right)\)=>x=a &b

10 tháng 5 2016

a. \(\frac{mx+5}{10}\)\(\frac{x+m}{4}\)=\(\frac{m}{20}\)

\(\frac{2mx+10}{20}\)\(\frac{5x+5m}{20}\)=\(\frac{m}{20}\)

2mx +10 + 5x +5m =m

x(2m+5)= -4m -10(1)

* 2m+5= 0 => m=-5/2

(1)<=> 0x=0 vậy phương trình 1 vô số nghiệm

* 2m+5 \(\ne\)0=> m\(\ne\)-5/2

pt (1)có nghiệm duy nhất là x= -2(2m+5): (2m+5)=-2

vậy với m=-5/2 phương trình đã cho vô số nghiệm

m\(\ne\)-5/2 phương trình đã cho có nghiệm duy nhất là x=-2

 

10 tháng 5 2016

b.(m+2)x+ 4(2m+1)= \(m^2\)+4(m-1)

(m+2)x= \(m^2\)+ 4m-4-8m -4

(m+2)x=\(m^2\)-4m-8(1)

* với m+2=0 => m=-2

pt(1)<=> 0x=4

vậy phương trinh đã cho vô nghiệm

* với m+2\(\ne\)0=> m\(\ne\)-2

phương trình đã cho có nghiệm duy nhất là x=( \(m^2\)-4m-8):(m-2)