Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{\sqrt{x-3-2\sqrt{x-3}+1}}{\sqrt{x-3}-1}=\dfrac{\sqrt{\left(\sqrt{x-3}-1\right)^2}}{\sqrt{x-3}-1}=\dfrac{\sqrt{x-3}-1}{\sqrt{x-3}-1}=1\)
Gọi giá vé cáp treo khứ hồi và giá vé 1 lượt lần lượt là a,b
Theo đề, ta có:
a-b=140000 và 20a+5b=7300000
=>a=320000 và b=180000
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{4}x+3y=6\\\dfrac{2}{3}x+3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{12}x=0\\\dfrac{1}{4}x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Tìm số nghiệm của PT thì mình biết chứ mấy cái tìm Min hay Max thì bạn xem đây nhé: https://cunghoctot.vn/Lesson/Detail/ki-nang-tim-gtnn-va-gtln-bang-3095
Tìm số nghiệm có 2 dạng:
1 là tìm nghiệm của PT bậc nhất
2 là tìm nghiệm của PT bậc 2 hoặc cao hơn
Đối với PT bậc nhất: VD: \(2x+5=6\)
Bạn bấm vào máy \(2x+5=6\) (đừng nói là bạn cũng không biết ghi nhé ^-^ )
Sau đó bấm các phím: SHIFT + CALC (tức là giải PT : SOLVE)
Màn hình sẽ hiện ra dòng chữ: Solve for X
Bạn ấn dấu "=" máy sẽ giải PT đó và cho ra kết quả
\(X=0.5\) (bạn không cần quan tâm đến dòng \(L-R=0\) đâu nhé, vì đó là phần lên cấp 3 mới học)
Giờ đến PT bậc 2
Bạn cũng có thể làm các bước như vừa rồi nếu PT có nghiệm kép
Còn muốn chắc chắn thì làm như sau:
Bạn bấm các phím: MODE + 5:EQN
Đến đây có 4 số 1 2 3 4:
Số 1 dùng cho giải hệ phương trình
Số 2 dùng để giải PT có 3 ẩn
Số 3 dùng để giải PT bậc 2
Số 4 dùng để giải PT bậc 3
Đối với số 1, bạn chỉ cần bấm các số vào và dùng dấu "=" để máy ghi nhớ
VD: \(\begin{cases}3x+y=3\\2x-y=7\end{cases}\)
Bạn bấm như sau (Từ trái sang phải nhé): \(1a=3\) ; \(1b=1\) ; \(1c=3\) ; \(2a=2\) ; \(2b=-1\) ; \(2c=7\)
Rồi bấm dấu "=", sẽ ra được: \(x=2\) và \(y=-3\)
Đó là đối với hệ phương trình có nghiệm, còn với vô số nghiệm thì nó sẽ ra dòng chữ: Infinite Sol và với vô nghiệm là: No-Solution
Đối với số 2, thì bạn cũng làm tương tự như với số 1
Đối với số 3, bạn cũng làm như bình thường
Nhập số vào, bấm dấu"="
Đến đây màn hình sẽ ra kết quả:
Nếu có \(x_1,x_2\) (tức là bấm dấu "=" rồi bấm thêm 1 lần nữa) thì PT có 2 nghiệm
Nếu chỉ ghi \(x\) thì PT có nghiệm kép
Nếu ra \(x_1,x_2\) nhưng lại ra số có chữ "i" trong đó tức là PT vô nghiệm (VD: \(x_1=-\dfrac{1}{3}+\dfrac{\sqrt{2}}{3}i\) ; \(x_2=-\dfrac{1}{3}-\dfrac{\sqrt{2}}{3}i\) )
Đối với số 4 thì cũng tương tự như các số trên
\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{4}{\sqrt{x}\left(\sqrt{x}-3\right)}\right).\left(\dfrac{\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)
\(=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}+3\right)}.\left(\dfrac{2\sqrt{x}}{x-4}\right)=\dfrac{2}{\sqrt{x}+3}\)