Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\dfrac{1}{xy}+\dfrac{1}{xz}\ge\dfrac{\left(1+1\right)^2}{xy+xz}=\dfrac{4}{x\left(y+z\right)}\)(1)
Áp dụng bất đẳng thức AM-GM ta có :
\(x\left(y+z\right)\le\dfrac{\left(x+y+z\right)^2}{4}=4\)=> \(\dfrac{1}{x\left(y+z\right)}\ge\dfrac{1}{4}\)=> \(\dfrac{4}{x\left(y+z\right)}\ge1\)(2)
Từ (1) và (2) => \(\dfrac{1}{xy}+\dfrac{1}{xz}\ge\dfrac{4}{x\left(y+z\right)}\ge1\)=> \(\dfrac{1}{xy}+\dfrac{1}{xz}\ge1\)(đpcm)
Đẳng thức xảy ra <=> x = 2 ; y = z = 1
\(\dfrac{1}{2x+1}+\dfrac{\left(\dfrac{1}{3}\right)^2}{1}\ge\dfrac{\left(1+\dfrac{1}{3}\right)^2}{2x+1+1}=\dfrac{8}{9}\left(\dfrac{1}{x+1}\right)\)
Tương tự: \(\dfrac{1}{2y+1}+\dfrac{1}{9}\ge\dfrac{8}{9}.\dfrac{1}{y+1}\) ; \(\dfrac{1}{2z+1}+\dfrac{1}{9}\ge\dfrac{8}{9}.\dfrac{1}{z+1}\)
Cộng vế:
\(VT+\dfrac{1}{3}\ge\dfrac{8}{9}\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\right)\ge\dfrac{4}{3}\)
\(\Rightarrow VT\ge1\)
Đặt vế trái của BĐT cần chứng minh là P
Ta có:
\(P=\dfrac{\sqrt{xy+\left(x+y+z\right)z}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}=\dfrac{\sqrt{\left(x+z\right)\left(y+z\right)}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}\)
\(P\ge\dfrac{\sqrt{\left(\sqrt{xy}+z\right)^2}+\sqrt{\left(x+y\right)^2}}{1+\sqrt{xy}}=\dfrac{\sqrt{xy}+x+y+z}{1+\sqrt{xy}}=\dfrac{\sqrt{xy}+1}{1+\sqrt{xy}}=1\) (đpcm)
Dấu "=" xảy ra khi \(x=y\)
Áp dụng BĐT Côsi cho 2 số dương x và \(\sqrt{1-y^2}\) có:
x\(\sqrt{1-y^2}\) ≤ \(\dfrac{x^2+1-y^2}{2}\)
Tương tự: \(y\sqrt{1-z^2}\le\dfrac{y^2+1-z^2}{2}\); \(z\sqrt{1-x^2}\le\dfrac{z^2+1-x^2}{2}\)
=> \(x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}\le\dfrac{x^2+1-y^2+y^2+1-z^2+z^2+1-x^2}{2}=\dfrac{3}{2}\)
Dấu "=" xảy ra ⇔ x = y = z = \(\dfrac{\sqrt{2}}{2}\) => x2 = y2 = z2 = \(\dfrac{1}{2}\)
=> x2 + y2 + z2 = 3x2 = 3.\(\dfrac{1}{2}\) = \(\dfrac{3}{2}\)
Lời giải:
Ta có: \(x+y+z=xyz\Rightarrow x(x+y+z)=x^2yz\)
\(\Rightarrow x(x+y+z)+yz=x^2yz+yz\)
\(\Rightarrow (x+y)(x+z)=yz(x^2+1)\)
Do đó: \(\frac{1+\sqrt{x^2+1}}{x}=\frac{1+\sqrt{\frac{(x+y)(x+z)}{yz}}}{x}\leq \frac{1+\frac{1}{2}(\frac{x+y}{y}+\frac{x+z}{z})}{x}\) theo BĐT AM-GM:
Thực hiện tương tự với các phân thức khác ta suy ra:
\(\text{VT}\leq \frac{1+\frac{1}{2}(\frac{x+y}{y}+\frac{x+z}{z})}{x}+\frac{1+\frac{1}{2}(\frac{y+z}{z}+\frac{y+x}{x})}{y}+\frac{1+\frac{1}{2}(\frac{z+x}{x}+\frac{z+y}{y})}{z}\)
\(\text{VT}\leq 3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3(xy+yz+xz)}{xyz}\)
Mà theo AM-GM:
\(\frac{3(xy+yz+xz)}{xyz}\leq \frac{(x+y+z)^2}{xyz}=\frac{(xyz)^2}{xyz}=xyz\)
Do đó: \(\text{VT}\leq xyz\)
Ta có đpcm.
Chắc là a;b;c hết chứ?
\(VT=\dfrac{a}{a+b+c+b-a}+\dfrac{b}{a+b+c+c-b}+\dfrac{c}{a+b+c+a-c}\)
\(VT=\dfrac{a}{c+2b}+\dfrac{b}{a+2c}+\dfrac{c}{b+2a}=\dfrac{a^2}{ac+2ab}+\dfrac{b^2}{ab+2bc}+\dfrac{c^2}{bc+2ac}\)
\(VT\ge\dfrac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=1\) (đpcm)
cho x,y,z>0 ,x+y+z=1 chu nhi?
\(\Rightarrow\dfrac{x}{x+y+z+y-x}=\dfrac{x}{2y+z}\)
\(\Rightarrow\dfrac{y}{1+z-y}=\dfrac{y}{x+y+z+z-y}=\dfrac{y}{2z+x}\)
\(\Rightarrow\dfrac{z}{1+x-z}=\dfrac{z}{x+y+z+x-z}=\dfrac{z}{2x+y}\)
\(\Rightarrow A=\dfrac{x}{2y+z}+\dfrac{y}{2z+x}+\dfrac{z}{2x+y}=\dfrac{x^2}{2xy+xz}+\dfrac{y^2}{2zy+xy}+\dfrac{z^2}{2xz+xz}\ge\dfrac{\left(x+y+z\right)^2}{3\left(xy+yz+xz\right)}=1\)
dau"=" xay ra<=>x=y=z=1/3
Áp dụng liên tiếp bđt Cauchy-Schwarz và AM-GM
\(\dfrac{x}{1+y^2}+\dfrac{y}{1+x^2}=\dfrac{x^2}{x+y^2x}+\dfrac{y^2}{y+x^2y}\)
\(\ge\dfrac{\left(x+y\right)^2}{x+y+y^2x+x^2y}=\dfrac{4}{x+y+xy\left(x+y\right)}\)
\(=\dfrac{4}{2+2xy}\ge\dfrac{4}{2+\dfrac{\left(x+y\right)^2}{2}}=\dfrac{4}{4}=1\)
\("="\Leftrightarrow x=y=1\)
==" Phúc oánh bây h đó chế