K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2020

a) \(9\left(x-1\right)^2-\frac{4}{9}\div\frac{2}{9}=\frac{1}{4}\)

\(\Leftrightarrow9\left(x-1\right)^2-2=\frac{1}{4}\)

\(\Leftrightarrow9\left(x-1\right)^2=\frac{9}{4}\)

\(\Leftrightarrow\left(x-1\right)^2=\frac{1}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=\frac{1}{2}\\x-1=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{2}\end{cases}}\)

b) \(\left(3x-1\right)^6=\left(3x-1\right)^4\)

\(\Leftrightarrow\left(3x-1\right)^6-\left(3x-1\right)^4=0\)

\(\Leftrightarrow\left(3x-1\right)^4\cdot\left[\left(3x-1\right)^2-1\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(3x-1\right)^4=0\\\left(3x-1\right)^2=1\end{cases}}\Leftrightarrow x\in\left\{0;\frac{1}{3};\frac{2}{3}\right\}\)

a: ĐKXĐ: \(x\notin\left\{-3;2\right\}\)

b: \(A=\dfrac{x^2-4-5+x+3}{\left(x-2\right)\left(x+3\right)}=\dfrac{x^2+x-6}{\left(x-2\right)\left(x+3\right)}=\dfrac{x+2}{x-2}\)

c: Để A=3/4 thì 4x-8=3x+6

=>x=14

d: Để A nguyên thì \(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(x\in\left\{3;1;4;0;6;-2\right\}\)

29 tháng 10 2020

a) ( x+ 3 ) ( x - 3 ) = 3 ( x-3)

x+ 3 =3

x =0

29 tháng 10 2020

a) x2 - 9 = 3( x - 3 )

⇔ ( x - 3 )( x + 3 ) - 3( x - 3 ) = 0

⇔ ( x - 3 )( x + 3 - 3 ) = 0

⇔ ( x - 3 ).x = 0

⇔ x - 3 = 0 hoặc x = 0

⇔ x = 3 hoặc x = 0

b) 3( 3x2 + 1 ) = 6 - 2( 3x + 2 )

⇔ 9x2 + 3 = 6 - 6x - 4

⇔ 9x2 + 6x + 3 - 6 + 4 = 0

⇔ 9x2 + 6x + 1 = 0

⇔ ( 3x + 1 )2 = 0

⇔ 3x + 1 = 0

⇔ x = -1/3

a) \(2x^2-2x-x^2+6=0\) 

\(\Leftrightarrow x^2-2x+1+5=0\)

\(\Leftrightarrow\left(x-1\right)^2=-5\) ( vô lý)

Vậy không có x thoả mãn \(2x.\left(x-1\right)-x^2+6=0\)

b) \(x^4-2x^2.\left(3+2x^2\right)+3x^2.\left(x^2+1\right)=-3\) 

\(\Leftrightarrow x^4-6x^2-4x^4+3x^4+3x^2+3=0\)

\(\Leftrightarrow3-3x^2=0\)

\(\Leftrightarrow3x^2=3\Leftrightarrow x^2=1\) \(\Leftrightarrow x\in\left\{-1;1\right\}\)

Vậy \(x\in\left\{-1;1\right\}\)

c) \(\left(x+1\right).\left(x^2-x+1\right)-2x=x.\left(x-2\right).\left(x+2\right)\)

\(\Leftrightarrow x^3+1-2x-x.\left(x^2-4\right)=0\)

\(\Leftrightarrow x^3+1-2x-x^3+4x=0\)

\(\Leftrightarrow1+2x=0\Leftrightarrow x=\dfrac{-1}{2}\)

Vậy x=\(\dfrac{-1}{2}\)

d) \(\left(x+3\right).\left(x^2-3x+9\right)-x.\left(x-2\right).\left(x+2\right)=15\)

\(\Leftrightarrow x^3+27-x.\left(x^2-4\right)-15=0\)

\(\Leftrightarrow x^3-27-x^3+4x-15=0\)

\(\Leftrightarrow4x-42=0\)

\(\Leftrightarrow x=10,5\)

Vậy x=10,5

30 tháng 7 2020

Sửa lại ạ!

a) \(\left(3x-1\right)^2-16\)

\(=\left(3x-1\right)^2-4^2\)

\(=\left(3x-1-4\right)\left(3x-1+4\right)\)

\(=\left(3x-5\right)\left(3x+3\right)\)

b) \(\left(5x-4\right)^2-49x^2\)

\(=\left(5x-4\right)^2-\left(7x\right)^2\)

\(=\left(5x-4-7x\right)\left(5x-4+7x\right)\)

\(=\left(-4-2x\right)\left(-4+12x\right)\)

c) \(\left(2x+5\right)^2-\left(x-9\right)^2\)

\(=\left(2x+5-x+9\right)\left(2x+5+x-9\right)\)

\(=\left(x+14\right)\left(3x-4\right)\)

d) \(\left(3x+1\right)^2-4\left(x-2\right)^2\)

\(=\left(3x+1\right)^2-\left[2\left(x-2\right)\right]^2\)

\(=\left(3x+1\right)^2-\left(2x-4\right)^2\)

\(=\left(3x+1-2x+4\right)\left(3x+1+2x-4\right)\)

\(=\left(x+5\right)\left(5x-3\right)\)

e) \(9\left(2x+3\right)^2-4\left(x+1\right)^2\)

\(=\left[3\left(2x+3\right)\right]^2-\left[2\left(x+1\right)\right]^2\)

\(=\left(6x+9\right)^2-\left(2x+2\right)^2\)

\(=\left(6x+9-2x-2\right)\left(6x+9+2x+2\right)\)

\(=\left(4x+7\right)\left(8x+11\right)\)

P/s: Ko chắc!

Thu gọn chưa hết kìa bạn ơi

3 tháng 7 2017

3) \(\left(x-3\right)\left(x+3\right)\left(x^2+9\right)-\left(x^2-2\right)\left(x^2+2\right)\)

\(=\left(x^2-9\right)\left(x^2+9\right)-\left(x^4-4\right)\)

\(=\left(x^4-81\right)-\left(x^4-4\right)\)

\(=x^4-81-x^4+4\)

=-77 =>đpcm

4)\(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)

\(=\left[\left(3x+1\right)-\left(3x+5\right)\right]^2\)

\(=\left(3x+1-3x-5\right)^2\)

=(-4)2

=16 => đpcm

3 tháng 7 2017

1)\(\left(x-2\right)^2-\left(x-3\right)\left(x-1\right)=\left(x^2-4x+4\right)-\left(x^2-4x+3\right)=1\)

=>đpcm

2)\(\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)

\(=\left(x-1-x-1\right)\left[\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)+\left(x+1\right)^2\right]+6\left(x^2-1\right)\)

\(=\left(-2\right)\left(x^2-2x+1+x^2-1+x^2+2x+1\right)+6x^2-6\)

\(=\left(-2\right)\left(3x^2+1\right)+6x^2-6=-6x^2-2+6x^2-6=-8\) => đpcm

21 tháng 7 2016

a,\(\Leftrightarrow\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)-17=0\)

\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x-17=0\)

\(\Leftrightarrow9x-10=0\)

\(\Leftrightarrow x=\frac{10}{9}\)

 

21 tháng 7 2016

b,\(\Leftrightarrow x^3+8-x^3+2x-15=0\)

\(\Leftrightarrow2x=7\)

\(\Leftrightarrow x=\frac{7}{2}\)

28 tháng 8 2020

Ít thôi -..-

a) ( 3x + 2 )( 2x + 9 )  - ( x + 3 )( 6x + 1 ) = ( x + 1 )2 - ( x + 2 )( x - 2 )

<=> 6x2 + 31x + 18 - ( 6x2 + 19x + 3 ) = x2 + 2x + 1 - ( x2 - 4 )

<=> 6x2 + 31x + 18 - 6x2 - 19x - 3 = x2 + 2x + 1 - x2 + 4

<=> 12x + 15 = 2x + 5

<=> 12x - 2x = 5 - 15

<=> 10x = -10

<=> x = -1

b) ( 2x + 3 )( x - 4 ) + ( x - 5 )( x - 2 ) = ( 3x - 5 )( x - 4 )

<=> 2x2 - 5x - 12 + x2 - 7x + 10 = 3x2 - 17x + 20

<=> 3x2 - 12x - 2 = 3x2 - 17x + 20

<=> 3x2 - 12x - 3x2 + 17x = 20 + 2

<=> 5x = 22

<=> x = 22/5

c) ( x + 2 )3 - ( x - 2 )3 - 12x( x - 1 ) = -8

<=> x3 + 6x2 + 12x + 8 - ( x3 - 6x2 + 12x - 8 ) - 12x2 + 12x = -8

<=>  x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8

<=> 12x + 16 = -8

<=> 12x = -24

<=> x = -2

d) ( 3x - 1 )2 - 5( x + 1 ) + 6x - 3.2x + 1 - ( x - 1 )2 = 16

<=> 9x2 - 6x + 1 - 5x - 5 + 6x - 6x + 1 - ( x2 - 2x + 1 ) = 16

<=> 9x2 - 11x - 3 - x2 + 2x - 1 = 16

<=> 8x2 - 9x - 4 = 16

<=> 8x2 - 9x - 4 - 16 = 0

<=> 8x2 - 9x - 20 = 0

( Đến đây bạn có hai sự lựa chọn : 1 là vô nghiệm

                                                         2 là nghiệm vô tỉ =) )

28 tháng 8 2020

a) (3x + 2)(2x + 9) - (x + 3)(6x + 1) = (x + 1)2 - (x + 2)(x - 2)

=> 3x(2x + 9) + 2(2x + 9) - x(6x + 1) - 3(6x + 1) = x2 + 2x + 1 - x(x - 2) - 2(x - 2)

=> 6x2 + 27x + 4x + 18 - 6x2 - x - 18x - 3 = x2 + 2x + 1 - x2 + 2x - 2x + 4

=> (6x2 - 6x2) + (27x + 4x - x - 18x) + (18 - 3) = (x2 - x2) + (2x + 2x - 2x) + (1 + 4)

=> 12x + 15 = 2x + 5

=> 12x + 15  - 2x - 5 = 0

=> 10x + 10 = 0

=> 10x = -10 => x = -1

b) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)

=> 2x(x - 4) + 3(x - 4) + x(x - 2) - 5(x - 2) = 3x(x - 4) - 5(x - 4)

=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 = 3x2 - 12x - 5x + 20

=> (2x2 + x2) + (-8x + 3x - 2x - 5x) + (-12 + 10) = 3x2 - 17x + 20

=> 3x2 - 12x - 2 = 3x2 - 17x + 20

=> 3x2 - 12x - 2 - 3x2 + 17x - 20 = 0

=> (3x2 - 3x2) + (-12x + 17x) + (-2 - 20) = 0

=> 5x - 22 = 0

=> 5x = 22 => x = 22/5

c) (x + 2)3 - (x - 2)3 - 12x(x - 1) = -8

=> x3 + 6x2 + 12x + 8 - (x3  - 6x2 + 12x - 8) - 12x2 + 12x = -8

=> x3 + 6x2 + 12x + 8 -x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8

=> (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x + 12x) + (8 + 8) = -8

=> 12x + 16 = -8

=> 12x = -24

=> x = -2

Còn bài cuối làm nốt

8 tháng 10 2021

\(d,\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=15\\ \Leftrightarrow24x=-10\Leftrightarrow x=-\dfrac{5}{12}\\ e,\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=17\\ \Leftrightarrow9x=10\Leftrightarrow x=\dfrac{10}{9}\\ f,\Leftrightarrow9x^2+18x+9-18x=36+x^3-27\\ \Leftrightarrow x^3-9x^2=0\Leftrightarrow x^2\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)