K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2018

\(A=1+\frac{2^2}{3^2}+\frac{2^2}{5^2}+\frac{2^2}{7^2}+...+\frac{2^2}{2009^2}\)

\(A=1+2^2\left(\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+..+\frac{1}{2009^2}\right)\)

Ta có: \(\frac{1}{3^2}< \frac{1}{1.3};\frac{1}{5^2}< \frac{1}{3.5};\frac{1}{7^2}< \frac{1}{5.7};...;\frac{1}{2009^2}< \frac{1}{2007.2009}\)

\(\Rightarrow A< 1+4\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+..+\frac{1}{2007.2009}\right)\)

\(=1+4\cdot\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2007}-\frac{1}{2009}\right)\)

\(=1+2\left(1-\frac{1}{2009}\right)=3-\frac{2}{2009}< 3\)

\(\Rightarrow A< 3\)

9 tháng 8 2016

ai giúp mink vs mini dc can gấp

15 tháng 3 2017

suy ra 10a =10[10^2004+1] trên 10^2005+1

10a=10^2005 +1+9 trên 10^2005 +1= 10^2005 +1 trên 10^2005 +1 + 9 trên 10^2005 +1

10a= 1+9 trên 10^2005

tớ chỉ làm đc thế thôi xem đúng ko nhé nếu sai thì đừng trách mik vui

10 tháng 7 2017


a) 3^200 và 2^300
ta có:3^200=3^2x100=(3^2)^100=9^100
         2^300=2^3x100=(2^3)^100=8^100
vì 9>8 =>9^100>8^100
=>3^200>2^200
vậy...
b)125^5 và 25^7
ta có:125^5=(5^3)^5=5^15
         25^7=(5^2)^7=5^14
vì 15>14 =>5^15>5^14
=>125^5>25^7
vậy.....
c)9^20 và 27^13 
ta có:9^20=(3^2)^20=3^40
        27^13=(3^3)^13=3^39
vì 40>39 => 3^40>3^39
=>9^20>27^13
vậy....
d)3^54 và 2^81
ta có:3^54=3^6x9=(3^6)^9=729^9
        2^81=2^9x9=(2^9)^9=512^9
vì 729>512 =>729^9>512^9
=> 3^54>2^81
vậy.....
e)10^30 và 2^100
ta có: 10^30=10^3x10=(10^3)^10=1000^10
          2^100=2^10x10=(2^10)^10=1024^10
vì 1000<1024 =>1000^10<1024^10
=> 10^30<2^100
vậy....
f)5^40 và 620^10
ta có:5^40=5^4x10=(5^4)^10=625^10
vì 625>620 =>625^10>620^10
=>5^40>620^10
vậy....
ĐÓ LÀ CÁCH LÀM CỦA TỚ NẾU THẤY ĐÚNG THÌ K NHA.
 

10 tháng 7 2017

a) 3^200 = (3^2)^100 = 9^100

2^300 = (2^3)^100 = 8 ^100

Do 9>8 =>9^100 > 8^100=> 3^200> 2^300

b) 125^5 = (5^3)5 = 5^15

25^7 =  ( 5^2)^7 = 5^14 

Do 5^15 > 5^14 => 125^5 > 25^7 

2 tháng 10 2021
a) A=(3+5)^2=8^2=64; B=3^2+5^2=9+25=34 Vậy A>B b) C=(3+5)^3=8^3=512; D=3^3+5^3=27+125=152 Vậy C>D
4 tháng 6 2020

a) \(\frac{2}{3}=\frac{8}{12}\) ; \(\frac{1}{4}=\frac{3}{12}\)

mà 8 > 3 ⇒ \(\frac{8}{12}>\frac{3}{12}\)\(\frac{2}{3}>\frac{1}{4}\)

b) \(\frac{7}{10}\)\(\frac{7}{8}\); mà 10 > 8 ⇒ \(\frac{7}{10}< \frac{7}{8}\)

c) \(\frac{6}{7}=\frac{30}{35}\); \(\frac{3}{5}=\frac{21}{35}\)

mà 30 > 21 ⇒ \(\frac{30}{35}>\frac{21}{35}\)\(\frac{6}{7}>\frac{3}{5}\)

d) \(\frac{14}{21}=\frac{2}{3}\); \(\frac{60}{72}=\frac{5}{6}\)

\(\frac{2}{3}=\frac{4}{6}\)\(\frac{2}{3}< \frac{5}{6}\)\(\frac{14}{21}< \frac{60}{72}\)

e) \(\frac{38}{133}=\frac{2}{7}\); \(\frac{129}{344}=\frac{3}{8}\)

\(\frac{2}{7}=\frac{16}{56}\) ; \(\frac{3}{8}=\frac{21}{56}\) mà 16<21 ⇒ \(\frac{16}{56}< \frac{21}{56}\)\(\frac{38}{133}< \frac{129}{344}\)

f) \(\frac{11}{54}=\frac{22}{108}\)\(\frac{22}{37}\) mà 108 > 37 ⇒ \(\frac{22}{108}< \frac{22}{37}\)\(\frac{11}{54}< \frac{22}{37}\)

4 tháng 6 2020

g) A > B

9 tháng 8 2017

1) ta có:\(2^{150}\)= (2^3)^50=8^50

\(3^{100}\)= (3^2)^50 = 9^50

vì 8^50 < 9^50 => \(2^{150}\)<\(3^{100}\)

10 tháng 8 2017

2^50=8^50

3^100=9^59

8^50<9^50

=>Đpcm

6 tháng 5 2017

\(\dfrac{1}{38}>\dfrac{1}{40}>\dfrac{1}{42}>...>\dfrac{1}{50}\)

=>\(\dfrac{1}{38}+\dfrac{1}{40}+\dfrac{1}{42}+\dfrac{1}{44}+\dfrac{1}{46}+\dfrac{1}{48}+\dfrac{1}{50}< 7\cdot\dfrac{1}{38}=\dfrac{7}{38}< 1\)

Vậy tổng trên bé hơn 1

A=-1-3-5-...-2017

=-(1+3+5+...+2017)

Xét tổng B=1+3+5+...+2017

Tổng B có:(2017-1):2+1=1009(số hạng)

Tổng B=\(\dfrac{\left(2017+1\right)\cdot1009}{2}=1009\cdot1009=1018081\)

=>A=-B=-1018081

6 tháng 5 2017

bn cho mk hỏi tai sao B lai = 1+3+5+..+2017 vay bn?

1 tháng 12 2016

1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)

\(3^{40}=\left(3^2\right)^{20}=9^{20}\)

\(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)

2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)

Ta có:\(n+3⋮d,2n+5⋮d\)

\(\Rightarrow2n+6⋮d,2n+5⋮d\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)

1 tháng 12 2016

3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)

\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)

\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)

\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)

\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)

6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)

\(2A=2^2+2^3+2^4+...+2^{101}\)

\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)

\(A=2^{101}-2\)

\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)