Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo định lý Py-ta-go:
BH2 = AB2 - AH2
CH2 = AC2 - AH2
Mà AB2 > AC2 => BH2 > CH2
b)góc HAB+góc B=90 độ
CAH+C=90 độ
Mà Cgóc >góc B
=> góc CAH<góc HAB
c) Vì AB là trung trực của HM (gt)
=> AH = AM (t/c đường trung trực)
Lại có: AC là trung trực của NH
=> AN = AH (t/c đường trung trực)
=> AM = AN (=AH)
=> ΔAMN cân tại A
chúc bạn học tốt:> mik cx ko chắc là đúng âu đó
Cho tam giác ABC có góc A=90 độ , AB=8cm , AC=6cm
a, tính BC
b, trên cạnh AC lấy điểm E sao cho AE=2cm; trên tia đối tia AB lấy điểm D sao cho AD=AB. Chứng minh tam giác BEC = tam giác DEC
c, chứng minh DE đi qua trung điểm cạnh BC
Cho tam giác ABC có góc A=90 độ , AB=8cm , AC=6cm
a, tính BC
b, trên cạnh AC lấy điểm E sao cho AE=2cm; trên tia đối tia AB lấy điểm D sao cho AD=AB. Chứng minh tam giác BEC = tam giác DEC
c, chứng minh DE đi qua trung điểm cạnh BC
a) Theo định lý Py-ta-go:
BH2 = AB2 - AH2
CH2 = AC2 - AH2
Mà AB2 > AC2 => BH2 > CH2
b)góc HAB+góc B=90 độ
CAH+C=90 độ
Mà Cgóc >góc B
=> góc CAH<góc HAB
c) Vì AB là trung trực của HM (gt)
=> AH = AM (t/c đường trung trực)
Lại có: AC là trung trực của NH
=> AN = AH (t/c đường trung trực)
=> AM = AN (=AH)
=> ΔAMN cân tại A
a) Xét tam giác vuông AHB và tam giác vuông AHC có :
\(AB>AC\)(GT)
\(\widehat{AHB}=\widehat{AHC}=90^o\)
Do đó \(\Rightarrow HB>HC\)(ĐPCM)
b) Áp dụng tính chất đường đồng quy trong tam giác vuông
....
C) Kẻ NK sao cho MN=MK
Xét \(\Delta MAN\)và \(\Delta MCK\)có :
\(MA=MC\left(gt\right)\)
\(\widehat{AMN}=\widehat{CMK}\)( đối đỉnh )
\(MN=MK\)
Do đó : \(\Rightarrow\Delta MAN=\Delta MCK\)(c-g-c)
\(\Rightarrow\widehat{A}=\widehat{MCK}\)( sole trong) (1)
Mà \(\widehat{MCK}=\widehat{ANM}\)(sole trong) (2_
Từ(1) và (2)
=> \(\widehat{A}=\widehat{ANM}\)
\(\Rightarrow\Delta MAN\)Cân (đpcm)
a) Theo định lý Py-ta-go:
BH2 = AB2 - AH2
CH2 = AC2 - AH2
Mà AB2 > AC2 => BH2 > CH2
b)góc HAB+góc B=90 độ
CAH+C=90 độ
Mà Cgóc >góc B
=> góc CAH<góc HAB
c) Vì AB là trung trực của HM (gt)
=> AH = AM (t/c đường trung trực)
Lại có: AC là trung trực của NH
=> AN = AH (t/c đường trung trực)
=> AM = AN (=AH)
=> ΔAMN cân tại A