Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có\(\frac{a}{b}\)=\(\frac{4}{7}\)(1)
ta có a*b=252
a=252:b
thay a=252:b vào(1) ta có
\(\frac{252:b}{b}\)=\(\frac{4}{7}\)
suy ra (252:b)*7=b*4
1764:7b=4b
1764:7b*7b=4b*7b
1764=28b
b=1764:28
b=63
nên a=\(\frac{4}{7}\)*63
a=36
còn 1 trường hợp nữa là a=-36;b=-63 bạn tự làm nhé
(x-1)(x+5) / (x-1)(2x+6) = 1
=> (x-1)(x+5) = (x-1)(2x+6)
=> \(x^2+5x-x-5=2x^2+6x-2x-6\)
=> \(x^2-2x^2+4x-4x-5+6=0\)
=> \(-x^2+1=0\)
=> \(-x^2=-1\)
=> \(x^2=1\)
=> x thuộc {-1; 1}
\(\frac{\left(x-1\right)\left(x+5\right)}{\left(x-1\right)\left(2x+6\right)}\)
đề vầy à
Ta có:
=>\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...\frac{1}{50.51}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}...-\frac{1}{50}+\frac{1}{50}-\frac{1}{51}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{2}-\frac{1}{51}\)
Vì \(\frac{1}{2}-\frac{1}{51}<1\)
nên \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<1\)
\(y<\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{48\cdot49}+\frac{1}{49\cdot50}\)
\(y<1-\frac{49}{50}<1\)
=> y < 1