Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Chọn 1 nam từ 9 nam có 9 cách
Chọn 1 nữ từ 3 nữ có 3 cách
\(\Rightarrow\) Có \(9.3=27\) cách chọn nhóm 1 nam 1 nữ
b.
Chọn 2 nhà toán học từ 8 nahf toán học: \(C_8^2\) cách
Chọn 2 nhà vật lý từ 4 nhà vật lý: \(C_4^2\) cách
\(\Rightarrow C_8^2.C_4^2\) cách lập
c.
Các trường hợp thỏa mãn: (1 nhà toán học nữ, 2 nhà vật lý nam), (1 nhà toán học nữ, 1 nhà toán học nam, 1 nhà vật lý nam), (2 nhà toán học nữ, 1 nhà vật lý nam)
\(\Rightarrow C_3^1.C_4^2+C_3^1.C_5^1.C_4^1+C_3^2.C_4^1\) cách
1.
\(pt\Leftrightarrow sin4x\left(sin5x+sin3x\right)=sin2x.sinx\)
\(\Leftrightarrow2sin^24x.cosx=sin2x.sinx\)
\(\Leftrightarrow2sin^24x.cosx=2sin^2x.cosx\)
\(\Leftrightarrow2cosx.\left(sin^24x-sin^2x\right)=0\)
\(\Leftrightarrow2cosx.\left(sin4x-sinx\right)\left(sin4x+sinx\right)=0\)
\(\Leftrightarrow8cosx.sin\dfrac{5x}{2}.cos\dfrac{3x}{2}.sin\dfrac{5x}{2}.cos\dfrac{3x}{2}=0\)
\(\Leftrightarrow8cosx.sin5x.sin3x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin5x=0\\sin3x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{k\pi}{5}\\x=\dfrac{k\pi}{3}\end{matrix}\right.\)
\(pt\Leftrightarrow sin8x+sin2x=sin16x+sin2x\)
\(\Leftrightarrow sin8x=2sin8x.cos8x\)
\(\Leftrightarrow sin8x\left(1-2cos8x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin8x=0\\cos8x=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}8x=k\pi\\8x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{8}\\x=\pm\dfrac{\pi}{24}+\dfrac{k\pi}{4}\end{matrix}\right.\)
Gọi \(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+...+\frac{1}{4^n}\)
\(4A=1+\frac{1}{4}+\frac{1}{16}+...+\frac{1}{4^{n-1}}\)
\(4A-A=\left(1+\frac{1}{4}+\frac{1}{16}+...+\frac{1}{4^{n-1}}\right)-\left(\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+...+\frac{1}{4^n}\right)\)
\(3A=\left(1-\frac{1}{4^n}\right)\)
\(\Rightarrow A=\left(1-\frac{1}{4^n}\right):3\) hay \(A=\left(1-\frac{1}{4^n}\right).\frac{1}{3}\)
Vậy \(\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+...+\frac{1}{4^n}=\left(1-\frac{1}{4^n}\right).\frac{1}{3}\)
VD15:
Pt \(\Leftrightarrow2\left(1-sin^2x\right)=sinx+1\)
\(\Leftrightarrow-2sin^2x-sinx+1=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(sinx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\sinx=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\\x=\dfrac{-\pi}{2}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)
Vậy...
CD16:
Pt \(\Leftrightarrow\dfrac{1-cos6x}{2}-\dfrac{1-cos4x}{2}-\dfrac{1-cos2x}{2}=0\)
\(\Leftrightarrow-1-cos6x+cos4x+cos2x=0\)
\(\Leftrightarrow-\left(1+cos6x\right)+\left(cos4x+cos2x\right)=0\)
\(\Leftrightarrow-2.cos^23x+2.cos3x.cosx=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos3x=0\\cos3x=cosx\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\\x=k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)
Vậy...
VD17:
Pt\(\Leftrightarrow2.sin3x.cosx=2.cosx\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin3x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\end{matrix}\right.\)(\(k\in Z\))
Vậy...
1.a
\(\lim\dfrac{3n^3+2n^2+n}{n^3+4}=\lim\dfrac{n^3\left(3+\dfrac{2}{n}+\dfrac{1}{n^2}\right)}{n^3\left(1+\dfrac{4}{n^3}\right)}\)
\(=\lim\dfrac{3+\dfrac{2}{n}+\dfrac{1}{n^2}}{1+\dfrac{4}{n^3}}=\dfrac{3+0+0}{1+0}=3\)
b.
\(\lim\limits_{x\rightarrow3}\dfrac{x^2+2x-15}{x-3}=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(x+5\right)}{x-3}\)
\(=\lim\limits_{x\rightarrow3}\left(x+5\right)=8\)
2.
Ta có:
\(\lim\limits_{x\rightarrow5}f\left(x\right)=\lim\limits_{x\rightarrow5}\dfrac{x^2-25}{x-5}=\lim\limits_{x\rightarrow5}\dfrac{\left(x-5\right)\left(x+5\right)}{x-5}\)
\(=\lim\limits_{x\rightarrow5}\left(x+5\right)=10\)
Và: \(f\left(5\right)=9\)
\(\Rightarrow\lim\limits_{x\rightarrow5}f\left(x\right)\ne f\left(5\right)\)
\(\Rightarrow\) Hàm gián đoạn tại \(x_0=5\)
24.
\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{\sqrt{x}-1}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{1}{\sqrt{x}+1}=\dfrac{1}{1+1}=\dfrac{1}{2}\)
Hàm liên tục tại \(x=1\) khi:
\(\lim\limits_{x\rightarrow1}f\left(x\right)=f\left(1\right)\Rightarrow\dfrac{1}{2}=k+1\)
\(\Rightarrow k=-\dfrac{1}{2}\)
25.
\(S=\dfrac{u_1}{1-q}=\dfrac{1}{1-\left(-\dfrac{1}{2}\right)}=\dfrac{2}{3}\)
26.
\(\overrightarrow{AD}=\overrightarrow{B'C'}\) nên \(\overrightarrow{AD}\) cùng hướng với \(\overrightarrow{B'C'}\)
27.
\(cos\left(\overrightarrow{a};\overrightarrow{b}\right)=\dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left|\overrightarrow{a}\right|.\left|\overrightarrow{b}\right|}\)
\(\Rightarrow\overrightarrow{a}.\overrightarrow{b}=\left|\overrightarrow{a}\right|.\left|\overrightarrow{b}\right|.cos\left(\overrightarrow{a};\overrightarrow{b}\right)=3.5.cos120^0=-\dfrac{15}{2}\)
28.
Cả 4 khẳng định này đều sai
Khẳng định đúng: \(\overrightarrow{OA}+\overrightarrow{OC'}=\overrightarrow{0}\)
29.
\(\overrightarrow{MD}+\overrightarrow{MC}=\overrightarrow{0}\) là khẳng định đúng
Đắp án là: 1+1=2
bằng 2