Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 4:
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔBAE=ΔBHE
Suy ra: BA=BH và EA=EH
b: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
Do đó: ΔAEK=ΔHEC
Suy ra: AK=HC
Ta có: BA+AK=BK
BH+HC=BC
mà BA=BH
và AK=HC
nên BK=BC
hay ΔBKC cân tại B
c: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)
Bài 1:
Ta có: \(A=\dfrac{x}{yz}:\dfrac{y}{zx}=\dfrac{x}{yz}.\dfrac{zx}{y}=\dfrac{x^2}{y^2}=\left(\dfrac{x}{y}\right)^2\)
Mà \(3x=2y\Leftrightarrow\dfrac{x}{y}=\dfrac{2}{3}\Leftrightarrow\left(\dfrac{x}{y}\right)^2=\dfrac{4}{9}\)
\(\Rightarrow A=\dfrac{4}{9}\)
\(1,\\ 3x=2y\Rightarrow\dfrac{x}{y}=\dfrac{2}{3}\Rightarrow\dfrac{x}{yz}=\dfrac{2}{3z}\\ 3x=2y\Rightarrow\dfrac{y}{x}=\dfrac{3}{2}\Rightarrow\dfrac{y}{zx}=\dfrac{3}{2z}\)
\(2,\\ \dfrac{x}{y^2}=2\Rightarrow x=2y^2\\ \dfrac{x}{y}=16\Rightarrow x=16y\\ \Rightarrow2y^2=16y\Rightarrow2y\left(y-8\right)=0\\ \Rightarrow\left[{}\begin{matrix}y=0\left(ktm.vì.y\ne0\right)\\y=8\end{matrix}\right.\Rightarrow y=8\Rightarrow x=128\)
\(3,\\ \dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
Giả sử Ax//By
Kẻ Ax//By//Oz
\(\Rightarrow\widehat{OAx}=\widehat{AOz}=50^0\)(so le trong)
Ta có: By//Oz
\(\Rightarrow\widehat{OBy}+\widehat{BOz}=180^0\)(trong cùng phía)
\(\Rightarrow\widehat{OBz}=180^0-150^0=30^0\)
Ta có: \(\widehat{AOB}=\widehat{AOz}-\widehat{BOz}=50^0-30^0=20^0\)
\(\Rightarrow x=20^0\)
\(2.16\ge2^n>4\)
\(2.2^4\ge2^n>2^2\)
\(2^5\ge2^n>2^2\)
=> \(n\in\left\{3,4,5\right\}\)
Vậy: \(n\in\left\{3,4,5\right\}\)
Lời giải:
Vì \(3x=5y\Rightarrow y=\frac{3}{5}x=0,6x\). Thay vào điều kiện thứ 2 ta có:
\(2x+3y=-39\)
\(\Leftrightarrow 2x+3.0,6x=-39\)
\(\Leftrightarrow 3,8x=-39\Rightarrow x=\frac{-195}{19}\)
\(\Rightarrow y=0,6x=0,6.\frac{-195}{19}=\frac{-117}{19}\)
Vậy \((x,y)=(\frac{-195}{19}; \frac{-117}{19})\)
Ta có: \(3x=5y\Leftrightarrow\dfrac{x}{5}=\dfrac{y}{3}\Leftrightarrow\dfrac{2x}{10}=\dfrac{3y}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{2x}{10}=\dfrac{3y}{9}=\dfrac{2x+3y}{10+9}=\dfrac{-39}{19}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=\dfrac{-39}{19}\\\dfrac{y}{3}=\dfrac{-39}{19}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-195}{19}\\y=\dfrac{-177}{19}\end{matrix}\right.\)
Vậy, ...
Câu 1: A
Câu 2: D
Câu 3: A
Câu 4: A