K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2021

Bài 1: 

a: Xét ΔAMB và ΔAMC có

AM chung

AB=AC

BM=CM

Do đó: ΔABM=ΔACM

25 tháng 12 2021

a: Xét ΔABM và ΔACM có

AB=AC
AM chung

BM=CM

Do đó: ΔABM=ΔACM

25 tháng 12 2021

sao trả lời mỗi câu a vậy limdim

9 tháng 3 2018

Bạn xem lời giải ở đây nhé:

Câu hỏi của Yubi - Toán lớp 7 - Học toán với OnlineMath

a: Xét ΔAMB và ΔAMC có

MA chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

ΔABC cân tại A

mà AMlà trung tuyến

nên AM vuông góc BC

b: Xét ΔAHD và ΔAHE có

AD=AE
góc DAH=góc EAH

AH chung

=>ΔAHD=ΔAHE

Xét ΔABC có AD/AB=AE/AC

nên DE//BC

c: Xét ΔIEK và ΔICM có

góc IEK=góc ICM

IE=IC

góc EIK=góc CIM

=>ΔIEK=ΔICM

=>EK=MC

mà EK//MC

nên EKCM là hình bình hành

=>CK//EM

20 tháng 12 2021

a: Xét ΔABD và ΔAED có

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

19 tháng 12 2021

a: Xét tứ giác EFBC có

A là trung điểm của EB

A là trung điểm của CF

Do đó: EFBC là hình bình hành

Suy ra: EF=BC

16 tháng 12 2021

1. Xét tam giác ABD và tam giác AED có:

\(\text{+}\)  AD chung.

\(\text{+}\) \(\widehat{BAD}=\widehat{EAD}\) (AD là phân giác).

\(\text{+}\) AB = AE (gt).

\(\Rightarrow\) Tam giác ABD = Tam giác AED (c - g - c).

2. a) Tam giác ABD = Tam giác AED (cmt).

\(\Rightarrow\) \(\widehat{ABD}=\widehat{AED}\) (2 góc tương ứng).

Mà \(\widehat{ABD}+\widehat{KBD}=\)\(180^o.\)

      \(\widehat{AED}+\widehat{CED}=\)\(180^o.\)

\(\Rightarrow\) \(\widehat{KBD}=\widehat{CED} (đpcm).\)

b) Xét tam giác KBD và tam giác CED có:

\(\text{+}\) \(\widehat{KBD}=\widehat{CED} \) (cmt).

\(\text{+}\) BD = ED (Tam giác ABD = Tam giác AED).

\(\text{+}\) \(\widehat{BDK}=\widehat{EDC}\) (2 góc đối đỉnh).

\(\Rightarrow\) Tam giác KBD = Tam giác CED (g - c - g).

3. Ta có: KE = KD + DE; CB = CD + DB.

Mà KD = CD (Tam giác KBD = Tam giác CED).

      DE = DB (Tam giác ABD = Tam giác AED).

\(\Rightarrow\) KE = CB.

Xét tam giác KBE và tam giác CEB có:

\(\text{+}\) KE = CB (cmt).

\(\text{+}\) BK = EC (Tam giác KBD = Tam giác CED).

\(\text{+}\) BE chung.

\(\Rightarrow\) Tam giác KBE = Tam giác CEB (c - c - c).

4. Ta có: DE \(\perp\) AC (gt). => Tam giác AED vuông tại E.

Mà tam giác ABD = tam giác AED (cmt).

\(\Rightarrow\) Tam giác ABD vuông tại B.

\(\Rightarrow\) \(\widehat{ABD}\) \(=90^o.\)

\(\Rightarrow\) Tam giác ABC vuông tại B.

Vậy để DE \(\perp\) AC thì tam giác ABC vuông tại B.