K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2021

\(a,A=\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2009}+\dfrac{1}{2008}-...-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{2}+1\\ A=1+\dfrac{1}{2010}=\dfrac{2011}{2010}\)

\(b,B=\left(-124\right)\left(63-37\right)+\dfrac{17}{66}\left(-66\right)=-124\cdot26+17=-3224+17=-3207\)

16 tháng 7 2016

bn viết câu hỏi ra luôn đi

16 tháng 7 2016

cậu viết đề bài ra luôn đi

10 tháng 9 2017

a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)

Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)

Vậy MinA = 11 khi -2 =< x =< 9

b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)

Dấu "=" xảy ra khi x = 1

Vậy MaxB = 3/4 khi x=1

10 tháng 9 2017

Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)

Vậy \(A_{min}=11\) khi \(2\le x\le9\)

10 tháng 7 2017

 a)     \(\left(2x-3\right)\left(\frac{3}{4}x+1\right)=0\)

<=>\(\hept{\begin{cases}2x-3=0\\\frac{3}{4}x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=3\\\frac{3}{4}x=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\x=-\frac{3}{4}\end{cases}}}\)

b)        \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}\Leftrightarrow\hept{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}}\)

28 tháng 9 2016

Chắc câu b sai?

 

29 tháng 10 2021

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{3}{5}>\dfrac{2}{5}\\\dfrac{1}{2}x-\dfrac{3}{5}< -\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x>1\\\dfrac{1}{2}x< \dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>2\\x< \dfrac{2}{5}\end{matrix}\right.\)

3 tháng 9 2018

chỉnh đề B

\(B=x^5-15x^4+16x^3-29x^2+13x\)

\(=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3+\left(2x+1\right)x^2+\left(x-1\right)x\)

\(=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)

\(=-x=-14\)