K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2021

a) -28xy5z: 7xy2z3= -4y3

b) 8x2y2z : 6xyz= 6xy

 

11 tháng 7 2021

c) 6x3y4 : x3y=6y3

d) 30x2y2z: 6xyz

e) 54x4y2z: 9x4y= 6y3z

4 tháng 5 2022

ủa đây là dạng toán lớp 6 mà

10 tháng 3 2022

 \(a)P=\left(\dfrac{x^2+2}{x^3-1}+\dfrac{x+1}{x^2+x+1}+\dfrac{1}{1-x}\right).\left(\dfrac{x^2}{x+1}+1\right).\left(x\ne1;x\ne-1\right).\\ P=\dfrac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}.\dfrac{x^2+x+1}{x+1}.\\ P=\dfrac{x^2-x}{x-1}.\dfrac{1}{x+1}.\\ P=\dfrac{x\left(x-1\right)}{x-1}.\dfrac{1}{x+1}.\\ P=x.\dfrac{1}{x+1}.\\ P=\dfrac{x}{x+1}.\)

\(P=\dfrac{1}{4}.\Rightarrow\dfrac{x}{x+1}=\dfrac{1}{4}.\\ \Leftrightarrow4x-x-1=0.\\ \Leftrightarrow3x-1=0.\\ \Leftrightarrow x=\dfrac{1}{3}\left(TM\right).\)

Bài 1: 

a) Ta có: \(M=\left(\dfrac{x+2}{x^2+2x+1}+\dfrac{x-2}{1-x^2}\right)\cdot\dfrac{x+1}{x}\)

\(=\left(\dfrac{\left(x+2\right)\left(x-1\right)}{\left(x+1\right)^2\cdot\left(x-1\right)}-\dfrac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)^2\cdot\left(x-1\right)}\right)\cdot\dfrac{x+1}{x}\)

\(=\dfrac{x^2-x+2x-2-\left(x^2+x-2x-2\right)}{\left(x+1\right)^2\cdot\left(x-1\right)}\cdot\dfrac{x+1}{x}\)

\(=\dfrac{x^2+x-2-x^2+x+2}{\left(x+1\right)\left(x-1\right)}\cdot\dfrac{1}{x}\)

\(=\dfrac{2x}{\left(x+1\right)\left(x-1\right)}\cdot\dfrac{1}{x}\)

\(=\dfrac{2}{x^2-1}\)

Bài 2:

1: Ta có: \(\left(x-5\right)^2+\left(x+3\right)^2=2\left(x-4\right)\left(x+4\right)-5x+7\)

\(\Leftrightarrow x^2-10x+25+x^2+6x+9=2\left(x^2-16\right)-5x+7\)

\(\Leftrightarrow2x^2-4x+34=2x^2-32-5x+7\)

\(\Leftrightarrow2x^2-4x+34-2x^2+5x+25=0\)

\(\Leftrightarrow x+59=0\)

hay x=-59

Vậy: S={-59}

2 tháng 12 2016

c, là hằng đẳng thức nha bạn

(\(\sqrt{x}\)+\(\sqrt{2x}\))2=0

suy ra \(\sqrt{x}\)+\(\sqrt{2x}\)=0

\(\sqrt{x}\)=\(\sqrt{2x}\)

suy ra x=0

Bài 2: Tìm x:

a) \(3x^2\)\(-27x=0\)

\(< =>3x\left(x-9\right)=0\)

\(=>x=0\) hay \(x-9=0\)

\(=>x=0\) hay \(x=9\)

13 tháng 12 2016

BAI 3 :quy đồng lên ta được a^3/abc+b^3/abc+c^3/abc=(a^3+b^3+c^3)/abc

ta có (a+b)^3=a^3+3a^2b+3ab^2+b^3=>a^3+b^3=(a+b)^3-3ab(a+b)

=>a^3+b^3+c^3=(a+b+c)^3+3(a+b)c(a+b+c)=0+0=0

=>A=0/ABC=0

BAI 4:

theo dinh ly py ta go ta co ah^2=ac^2-hc^2

va ah^2 cung bang ab^2-bh^2

=>2ah^2=ac^2-hc^2+ab^2-bh^2=ab^2+ac^2-hb^2-hc^2=ac^2-bh^2-hc^2

=(bh+ch)^2-bh^2-ch^2=bh^2+2.bh.ch+ch^2-bh^2-ch^2

=2.bh.ch=2ah^2

==>ah^2=bhxch

d. DE cat AM tai O

vi tam giac ahm vuong tai h co ho la trung tuyen nen ho=am/2

ma am=de nen oh=de/2

==>tam giac dhe vuong tai h

22 tháng 5 2021

Bài 1:
b) \(B=A.\dfrac{-10}{x-4}=\dfrac{x-4}{x+5}.\dfrac{-10}{x-4}=\dfrac{-10}{x+5}\)

Để B nguyên <=> x+5 nguyên mà \(x\in Z\Rightarrow x+5\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

\(\Leftrightarrow x\in\left\{-6;-4;-3;-7;0;-10;-15;5\right\}\) kết hợp với điều kiện của x

\(\Rightarrow x\in\left\{-15;-10;-6;-7;-3;0;5\right\}\)

Bài 5:

Có \(\left|x-2018\right|+\left|2x-2019\right|+\left|3x-2020\right|\ge0\) \(\forall\)x

\(\Rightarrow x-2021\ge0\) \(\Leftrightarrow x\ge2021\)

\(\Rightarrow x-2018>0,2x-2019>0,3x-2020>0\)

PT \(\Leftrightarrow x-2018+2x-2019+3x-2020=x-2021\)

\(\Leftrightarrow5x=4036\) \(\Leftrightarrow x=\dfrac{4036}{5}< 2021\) (L)

Vậy pt vô nghiệm

 

 

 

2:

a: BC=căn 15^2+20^2=25cm

AH=15*20/25=12cm

góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

=>DE=AH=12cm

b: ΔAHB vuông tại H có HD vuông góc AB

nên AD*AB=AH^2

ΔAHC vuông tại H có HE vuông góc AC

nên AE*AC=AH^2

=>AD*AB=AE*AC

c: góc IAC+góc AED

=góc ICA+góc AHD

=góc ACB+góc ABC=90 độ

=>AI vuông góc ED

4:

a: góc BDH=góc BEH=góc DBE=90 độ

=>BDHE là hình chữ nhật

b: BDHE là hình chữ nhật

=>góc BED=góc BHD=góc A

Xét ΔBED và ΔBAC có 

góc BED=góc A

góc EBD chung

=>ΔBED đồng dạng với ΔBAC
=>BE/BA=BD/BC

=>BE*BC=BA*BD

c: góc MBC+góc BED

=góc C+góc BHD

=góc C+góc A=90 độ

=>BM vuông góc ED

28 tháng 6 2023

Bài 2: 

1) \(x^2-4=x^2-2^2=\left(x-2\right)\left(x+2\right)\)

2) \(1-4x^2=1^2-\left(2x\right)^2=\left(1-2x\right)\left(1+2x\right)\)

3) \(4x^2-9=\left(2x\right)^2-3^2=\left(2x+3\right)\left(2x-3\right)\)

4) \(9-25x^2=3^2-\left(5x\right)^2=\left(3-5x\right)\left(3+5x\right)\)

5) \(4x^2-25=\left(2x\right)^2-5^2=\left(2x+5\right)\left(2x-5\right)\)

6) \(9x^2-36=\left(3x\right)^2-6^2=\left(3x-6\right)\left(3x+6\right)\)

7) \(\left(3x\right)^2-y^2=\left(3x-y\right)\left(3x+y\right)\)

8) \(x^2-\left(2y\right)^2=\left(x-2y\right)\left(x+2y\right)\)

9) \(\left(2x\right)^2-y^2=\left(2x-y\right)\left(2x+y\right)\)

10) \(\left(3x\right)^2-9y^4=\left(3x\right)^2-\left(3y^2\right)^2=\left(3x-3y^2\right)\left(3x+3y^2\right)\)

28 tháng 6 2023

Bài 2: 

21) \(\left(\dfrac{x}{3}-\dfrac{y}{4}\right)\left(\dfrac{x}{3}+\dfrac{y}{4}\right)=\left(\dfrac{x}{3}\right)^2-\left(\dfrac{y}{4}\right)^2=\dfrac{x^2}{9}-\dfrac{y^2}{16}\)

22) \(\left(\dfrac{x}{y}-\dfrac{2}{3}\right)\left(\dfrac{x}{y}+\dfrac{2}{3}\right)=\left(\dfrac{x}{y}\right)^2-\left(\dfrac{2}{3}\right)^2=\dfrac{x^2}{y^2}-\dfrac{4}{9}\)

23) \(\left(\dfrac{x}{2}+\dfrac{y}{3}\right)\left(\dfrac{x}{2}-\dfrac{y}{3}\right)=\left(\dfrac{x}{2}\right)^2-\left(\dfrac{y}{3}\right)^2=\dfrac{x^2}{4}-\dfrac{y^2}{9}\)

24) \(\left(2x-\dfrac{2}{3}\right)\left(\dfrac{2}{3}+2x\right)=\left(2x-\dfrac{2}{3}\right)\left(2x+\dfrac{2}{3}\right)=\left(2x\right)^2-\left(\dfrac{2}{3}\right)^2=4x^2-\dfrac{4}{9}\)

25) \(\left(2x+\dfrac{3}{5}\right)\left(\dfrac{3}{5}-2x\right)=\left(\dfrac{3}{5}+2x\right)\left(\dfrac{3}{5}-2x\right)=\left(\dfrac{3}{5}\right)^2-\left(2x\right)^2=\dfrac{9}{25}-4x^2\)

26) \(\left(\dfrac{1}{2}x-\dfrac{4}{3}\right)\left(\dfrac{4}{3}+\dfrac{1}{2}x\right)=\left(\dfrac{1}{2}x-\dfrac{4}{3}\right)\left(\dfrac{1}{2}x+\dfrac{4}{3}\right)=\left(\dfrac{1}{2}x\right)^2-\left(\dfrac{4}{3}\right)^2=\dfrac{1}{4}x^2-\dfrac{16}{9}\)

27) \(\left(\dfrac{2}{3}x^2-\dfrac{y}{2}\right)\left(\dfrac{2}{3}x^2+\dfrac{y}{2}\right)=\left(\dfrac{2}{3}x^2\right)^2-\left(\dfrac{y}{2}\right)^2=\dfrac{4}{9}x^4-\dfrac{y^2}{4}\)

28) \(\left(3x-y^2\right)\left(3x+y^2\right)=\left(3x\right)^2-\left(y^2\right)^2=9x^2-y^4\)

29) \(\left(x^2-2y\right)\left(x^2+2y\right)=\left(x^2\right)^2-\left(2y\right)^2=x^4-4y^2\)

30) \(\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x^2\right)^2-\left(y^2\right)^2=x^4-y^4\)