K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 3 2021

Gọi đường sinh là l, bán kính đáy R, chiều cao SO là h

Do thiết diện qua trục là tam giác vuông nên thiết diện là tam giác vuông cân

\(\Rightarrow SO=R\Rightarrow h=R\)

Áp dụng định lý cos: \(AB=\sqrt{OA^2+OB^2-2OA.OB.cos120^0}=R\sqrt{3}\)

Gọi H là trung điểm AB \(\Rightarrow OH\perp AB\) ; \(AH=\dfrac{AB}{2}=\dfrac{R\sqrt{3}}{2}\)

\(OH=\sqrt{OA^2-AH^2}=\dfrac{R}{2}\)

Kẻ \(OK\perp SH\Rightarrow OK\perp\left(SAB\right)\Rightarrow OK=d\left(O;\left(P\right)\right)\)

\(\dfrac{1}{SO^2}+\dfrac{1}{OH^2}=\dfrac{1}{OK^2}\Rightarrow\dfrac{1}{R^2}+\dfrac{4}{R^2}=\dfrac{5}{3a^2}\Rightarrow R=a\sqrt{3}\)

\(V=\dfrac{1}{3}\pi R^2h=\dfrac{1}{3}\pi R^3=\pi a^3\sqrt{3}\)

NV
28 tháng 3 2021

Đặt \(log_2x=t\Rightarrow t\ge4\)

Phương trình trở thành: \(\sqrt{t^2-2t-3}=m\left(t-3\right)\)

\(\Leftrightarrow\sqrt{\left(t+1\right)\left(t-3\right)}=m\left(t-3\right)\)

\(\Leftrightarrow\sqrt{t+1}=m\sqrt{t-3}\)

\(\Leftrightarrow m=\sqrt{\dfrac{t+1}{t-3}}\)

Hàm \(f\left(t\right)=\sqrt{\dfrac{t+1}{t-3}}\) nghịch biến khi \(t\ge4\)

\(\lim\limits_{t\rightarrow+\infty}\sqrt{\dfrac{t+1}{t-3}}=1\) ; \(f\left(4\right)=\sqrt{5}\)

\(\Rightarrow1< f\left(t\right)\le\sqrt{5}\Rightarrow1< m\le\sqrt{5}\)

Đáp án D

NV
16 tháng 11 2021

Đề bài bị sai

Gọi H là trung điểm AB thì \(SH\perp\left(ABCD\right)\Rightarrow\widehat{SCH}=60^0\)

\(\Rightarrow CH=\dfrac{SH}{tan60^0}=\dfrac{SH}{\sqrt{3}}\)

Mặt khác tam giác SAB đều \(\Rightarrow\widehat{SBH}=60^0\Rightarrow BH=\dfrac{SH}{tan60^0}=\dfrac{SH}{\sqrt{3}}\)

\(\Rightarrow CH=BH\) (vô lý do tam giác BCH vuông tại B theo giả thiết. Mà CH là cạnh huyền, BH là cạnh góc vuông, 2 cạnh này không thể bằng nhau)

28 tháng 1 2023

\(I=\int\dfrac{2}{2+5sinxcosx}dx=\int\dfrac{2sec^2x}{2sec^2x+5tanx}dx\\ =\int\dfrac{2sec^2x}{2tan^2x+5tanx+2}dx\)

 

We substitute :

\(u=tanx,du=sec^2xdx\\ I=\int\dfrac{2}{2u^2+5u+2}du\\ =\int\dfrac{2}{2\left(u+\dfrac{5}{4}\right)^2-\dfrac{9}{8}}du\\ =\int\dfrac{1}{\left(u+\dfrac{5}{4}\right)^2-\dfrac{9}{16}}du\\ \)

Then, 

\(t=u+\dfrac{5}{4}\\I=\int\dfrac{1}{t^2-\dfrac{9}{16}}dt\\ =\int\dfrac{\dfrac{2}{3}}{t-\dfrac{3}{4}}-\dfrac{\dfrac{2}{3}}{t+\dfrac{3}{4}}dt\)

 

Finally,

\(I=\dfrac{2}{3}ln\left(\left|\dfrac{t-\dfrac{3}{4}}{t+\dfrac{3}{4}}\right|\right)+C=\dfrac{2}{3}ln\left(\left|\dfrac{tanx+\dfrac{1}{2}}{tanx+2}\right|\right)+C\)

 

NV
2 tháng 11 2021

Đặt tên các điểm như hình vẽ, với H là trung điểm AB

\(\Rightarrow\widehat{SHO}=60^0\) (là góc giữa thiết diện và đáy nón)

Tam giác SAB đều \(\Rightarrow SH=\dfrac{AB\sqrt{3}}{2}=2\sqrt{3}\) (trung tuyến tam giác đều)

\(\Rightarrow\left\{{}\begin{matrix}OH=SH.cos60^0=\sqrt{3}\\h=SO=SH.sin60^0=3\end{matrix}\right.\)

\(R=OA=\sqrt{AH^2+OH^2}=\sqrt{2^2+3}=\sqrt{7}\)

\(\Rightarrow V=\dfrac{1}{3}\pi R^2h=\dfrac{1}{3}\pi.7.3=7\pi\left(cm^3\right)\)

NV
2 tháng 11 2021

undefined

NV
5 tháng 5 2021

Phương trình mặt phẳng (P) qua A và vuông góc \(\overrightarrow{a}\) có dạng:

\(4\left(x-1\right)+2\left(y-1\right)-1\left(z+2\right)=0\)

\(\Leftrightarrow4x+2y-z-8=0\)

Gọi B là giao điểm (P) và \(\Delta\Rightarrow\) tọa độ B thỏa mãn:

\(4\left(2-t\right)+2\left(3+2t\right)-\left(1+3t\right)-8=0\) \(\Rightarrow t=\dfrac{5}{3}\) \(\Rightarrow B\left(\dfrac{1}{3};\dfrac{19}{3};6\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(-\dfrac{2}{3};\dfrac{16}{3};8\right)=\dfrac{2}{3}\left(-1;8;12\right)\)

Phương trình d: \(\left\{{}\begin{matrix}x=1-t\\y=1+8t\\z=-2+12t\end{matrix}\right.\)

8 tháng 4 2023

bằng 12456789