Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lớp 9 học hđt rồi bạn nhỉ \(VT=a-\sqrt{a}+1=a-\sqrt{a}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=VP\)
26.
\(\sqrt{\dfrac{-3}{2a^3}}=\sqrt{\dfrac{-3a}{2a^4}}=\dfrac{1}{a^2}\sqrt{\dfrac{-3a}{2}}\)
Đáp án B
28.
\(\sqrt{\dfrac{a^3}{a}}=\sqrt{a^2}=\left|a\right|=-a\)
Đáp án B
\(a.-3x^2+15x=0\)
\(\Leftrightarrow3x\left(-x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\-x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
\(b.2x^2-32=0\)
\(\Leftrightarrow2x^2=32\)
\(\Leftrightarrow x^2=16\)
\(\Leftrightarrow\left|x\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
\(c.2x^2-5x+1=0\)
\(a=2;b=-5;c=1\)
\(\Delta=\left(-5\right)^2-4.2.1=17>0\)
Do \(\Delta>0\) nên phương trình có 2 nghiệm phân biệt:
\(x_1=\dfrac{5+\sqrt{17}}{4}\)
\(x_2=\dfrac{5-\sqrt{17}}{4}\)
\(a,-3x^2+15x=0\\ -3x\left(x-5\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
\(b,\\ 2\left(x^2-16\right)=0\\ \Leftrightarrow x^2-16=0\\ \Leftrightarrow\left(x-4\right)\left(x+4\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
\(c,\\ \Delta=5^2-4.2=17\\ \Rightarrow x_1,x_2=\dfrac{\Delta\pm b}{2ac}\\ =\dfrac{5\pm\sqrt{17}}{4}\)
Bài này đơn giản, bạn chịu khó suy nghĩ chút là ra thôi! :))