Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nó bị lỗi nên mình làm câu khác rồi
câu hỏi đây nè bạn
Tìm GTLN của \(A=\dfrac{\left(x+2\right)^2}{2}\times\left(1-\dfrac{x^2}{x+2}\right)-\dfrac{x^2+6x+4}{x}\)
Bài 1:
\(a,VT=\dfrac{3x-1}{\left(x+2\right)\left(3x-1\right)}=\dfrac{1}{x+2}=VP\\ b,VT=\dfrac{x^2+2x+4}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{1}{x-2}\\ VP=\dfrac{x+3}{\left(x+3\right)\left(x-2\right)}=\dfrac{1}{x-2}\\ \Rightarrow VT=VP\\ c,VT=\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{2\left(x-2\right)}=\dfrac{x^2+2x+4}{2}=VP\)
Bài 2:
\(a,A=\dfrac{\left(x-4\right)\left(x+4\right)}{x-4}=x+4=2019+4=2023\\ b,2x-1=0\Leftrightarrow x=\dfrac{1}{2}\\ B=\dfrac{2x\left(x-1\right)}{\left(x-1\right)\left(x-2\right)}=\dfrac{2x}{x-2}=\dfrac{2\cdot\dfrac{1}{2}}{\dfrac{1}{2}-2}=\dfrac{1}{-\dfrac{3}{2}}=-\dfrac{2}{3}\\ c,x^2-9=0\Leftrightarrow\left[{}\begin{matrix}x=3\left(ktm\right)\\x=-3\left(tm\right)\end{matrix}\right.\Leftrightarrow x=-3\\ P=\dfrac{x-3}{\left(x-3\right)\left(x-2\right)}=\dfrac{1}{x-2}=\dfrac{1}{-3-2}=-\dfrac{1}{5}\)
Bài 3:
\(a,A=\dfrac{2\left(2x-3\right)}{2x^2-7x+6}=\dfrac{2\left(2x-3\right)}{\left(x-2\right)\left(2x-3\right)}=\dfrac{2}{x-2}\\ b,A=\dfrac{\left(x^2+2x\right)\left(2x^2-3x-2\right)}{x^2-2x}=\dfrac{x\left(x+2\right)\left(x-2\right)\left(2x+1\right)}{x\left(x-2\right)}=\left(x+2\right)\left(2x+1\right)\)
\(a,=\dfrac{x^2-4}{x+2}=\dfrac{\left(x-2\right)\left(x+2\right)}{x+2}=x-2\\ b,=\dfrac{x-5+2x+10-2x-10}{\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}=\dfrac{1}{x+5}\)
Xét ΔAMN vuông tại A có
\(MN^2=AM^2+AN^2\)
hay MN=20(cm)
Xét ΔABC có MN//BC
nên MN/BC=AM/AB=2/3
=>20/BC=2/3
hay y=30(cm)
a: Thay x=-4 vào B, ta được:
\(B=\dfrac{1-2\cdot\left(-4\right)}{2-\left(-4\right)}=\dfrac{1+8}{2+4}=\dfrac{9}{6}=\dfrac{3}{2}\)
a,\(P\left(x\right)=x^3-2x^4+x^5-\dfrac{1}{2}x^2+=x^5-2x^4+x^3-\dfrac{1}{2}x^2+1\)
bậc :5
b,\(Q\left(x\right)=-x^3+3x^2-5x^4-x^2+3x^3-\dfrac{1}{2}=-5x^4+2x^3+2x^2-\dfrac{1}{2}\)
bậc :4
b,\(P\left(x\right)-Q\left(x\right)=\left(x^5-2x^4+x^3-\dfrac{1}{2}x^2+1\right)-\left(-5x^4+2x^3+2x^2-\dfrac{1}{2}\right)\)
\(=\text{}\text{}\text{}\text{}x^5+3x^4-x^3-\dfrac{5}{2}x^2+\dfrac{3}{2}\)