K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2019

b) Ta có: \(\frac{x^3+x-2}{x^3-3x^2-2x-8}\)

\(=\frac{x^3-1+x-1}{x^3-4x^2+x^2-4x+2x-8}\)

\(=\frac{\left(x-1\right)\left(x^2+x+1\right)+\left(x-1\right)}{x^2\left(x-4\right)+x\left(x-4\right)+2\left(x-4\right)}\)

\(=\frac{\left(x-1\right)\left(x^2+x+1+1\right)}{\left(x^2+x+2\right)\left(x-4\right)}\)

\(=\frac{\left(x-1\right)\left(x^2+x+2\right)}{\left(x^2+x+2\right)\left(x-4\right)}\)

\(=\frac{x-1}{x-4}\)

\(=\frac{\left(x-4\right)+3}{x-4}=1+\frac{3}{x-4}\)

Để \(\frac{x^3+x-2}{x^3-3x^2-2x-8}\in Z\) <=> \(\frac{3}{x-4}\in Z\)

<=> 3 \(⋮\)x - 4

<=> x - 4 \(\in\)Ư(3) = {1; -1; 3; -3}

Lập bảng: 

 x - 4 1 -1 3 -3
  x 5 3 7 1

Vậy ...

31 tháng 12 2019

câu a) nữa bạn 

20 tháng 12 2020

ĐKXĐ: \(x\ne1\)

Ta có: \(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)

\(=\dfrac{x^4-2x^3+x^2-4x^2+8x-4+3}{x^2-2x+1}\)

\(=\dfrac{x^2\left(x^2-2x+1\right)-4\left(x^2-2x+1\right)+3}{x^2-2x+1}\)

\(=\dfrac{\left(x-1\right)^2\cdot\left(x^2-4\right)+3}{\left(x-1\right)^2}\)

\(=x^2-4+\dfrac{3}{\left(x-1\right)^2}\)

Để B nguyên thì \(3⋮\left(x-1\right)^2\)

\(\Leftrightarrow\left(x-1\right)^2\inƯ\left(3\right)\)

\(\Leftrightarrow\left(x-1\right)^2\in\left\{1;3;-1;-3\right\}\)

mà \(\left(x-1\right)^2>0\forall x\) thỏa mãn ĐKXĐ

nên \(\left(x-1\right)^2\in\left\{1;3\right\}\)

\(\Leftrightarrow x-1\in\left\{1;9\right\}\)

hay \(x\in\left\{2;10\right\}\) (nhận)

Vậy: \(x\in\left\{2;10\right\}\)

NV
21 tháng 12 2020

\(C=\dfrac{\left(x^2+3x\right)\left(x^2+2\right)-2}{x^2+2}=x^2+3x-\dfrac{2}{x^2+2}\)

\(C\in Z\Leftrightarrow2⋮\left(x^2+2\right)\)

\(\Leftrightarrow x^2+2=2\Rightarrow x=0\)

1 tháng 8 2016

\(A=\frac{-1}{2x+3}\)
Để A có giá trị nguyên thì -1 phải chia hết cho 2x+3
                            hay 2x+3\(\in\)Ư(-1)={1;-1}
                             =>x={-1;-2}

a: Để C là số nguyên thì \(3x^3+6x^2+3x+x^2+2x+1-2⋮x^2+2x+1\)

=>\(x^2+2x+1\in\left\{1;-1;2;-2\right\}\)

=>(x+1)^2=1 hoặc (x+1)^2=2

=>\(x\in\left\{0;-2;\sqrt{2}-1;-\sqrt{2}-1\right\}\)

b: Để D là số nguyên thì \(x^4+x^2+x^3+x-29⋮x^2+1\)

=>\(x^2+1\in\left\{1;-1;29;-29\right\}\)

=>x^2+1=1 hoặc x^2+1=29

=>\(x\in\left\{0;2\sqrt{7};-2\sqrt{7}\right\}\)