Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. PTHDGD: \(\dfrac{2}{5}x-\dfrac{4}{3}=x+2\Leftrightarrow\dfrac{3}{5}x=-\dfrac{10}{3}\Leftrightarrow x=-\dfrac{50}{9}\Leftrightarrow y=-\dfrac{32}{9}\Leftrightarrow A\left(-\dfrac{50}{9};-\dfrac{32}{9}\right)\)
Vậy \(A\left(-\dfrac{50}{9};-\dfrac{32}{9}\right)\) là tọa độ giao điểm
b. PTHDGD: \(x-2=3x+4\Leftrightarrow x=-3\Leftrightarrow y=-5\Leftrightarrow B\left(-3;-5\right)\)
Vậy \(B\left(-3;-5\right)\) là tọa độ giao điểm
Lời giải:
Đổi $3h15'$ thành $3,25$ giờ
Trong 1 giờ:
Vòi thứ nhất chảy được: $\frac{1}{4,5}$ (bể)
Vòi thứ hai chảy được: $\frac{1}{3,25}$ (bể)
Trong 1 giờ thì cả hai vòi cùng chảy được: $\frac{1}{4,5}+\frac{1}{3,25}=\frac{62}{117}$ (bể)
Hai vòi cùng chảy thì sẽ đầy bể sau:
$1:\frac{62}{117}=\frac{117}{62}$ giờ
Đổi $\frac{117}{62}$ giờ thành $1$ giờ $53$ phút $14$ giây
a, Vì ME là tiếp tuyến đường tròn O và M là tiếp điểm
=> \(MO\perp MF\) ( t/c tiếp tuyến ) hay ^OME = 900
Vậy tam giác EMO là tam giác vuông tại M
b, mình sửa đề là OE = 60 cm nhé
Theo định lí Pytago cho tam giác EMO vuông tại M
\(ME=\sqrt{EO^2-OM^2}=48\)cm
c, sửa ON vuông OE tại N
đến đây thì mình chả hiểu đề kiểu gì, chịu, bạn chép đề kiểu gì ấy, sai tào lao sao á, xem lại nhé
a: Xét ΔMEO có \(\widehat{OME}=90^0\)
nên ΔMEO vuông tại M
a) Xét \(\left(O\right):\)
+) Ta có: Dây AB = Dây AC (\(\Delta ABC\) cân tại A).
\(\Rightarrow\stackrel\frown{AB}=\stackrel\frown{AC}.\)
+) \(\widehat{ABM}=\dfrac{1}{2}sđ\stackrel\frown{AB}\) (Góc tạo bởi tia tiếp tuyến và dây cung).
\(\widehat{ABC}=\dfrac{1}{2}sđ\stackrel\frown{AC}\) (Góc nội tiếp).
Mà \(\stackrel\frown{AB}=\stackrel\frown{AC}\left(cmt\right).\)
\(\Rightarrow\widehat{ABM}=\widehat{ABC}.\)
\(\Rightarrow\) BA là phân giác \(\widehat{CBM}.\)
b) Xét \(\left(O\right):\)
\(\widehat{MBA}=\dfrac{1}{2}sđ\stackrel\frown{AB}\) (Góc tạo bởi tia tiếp tuyến và dây cung).
\(\widehat{MDB}=\dfrac{1}{2}sđ\stackrel\frown{AB}\) (Góc nội tiếp).
\(\Rightarrow\widehat{MBA}=\widehat{MDB}.\)
Xét \(\Delta MAB\) và \(\Delta MBD:\)
\(\widehat{MBA}=\widehat{MDB}.\)
\(\widehat{BMD}chung.\)
\(\Rightarrow\Delta MAB\sim\Delta MBD\left(g-g\right).\)
\(\Rightarrow\dfrac{MA}{MB}=\dfrac{MB}{MD}\) (Cặp cạnh tương ứng tỉ lệ).
\(\Rightarrow MA.MD=MB^2.\)
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x+1=x-2\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-5\end{matrix}\right.\)
Bài 3:
a:Ta có: \(\sqrt{4x^2-4x+1}=3\)
\(\Leftrightarrow\left|2x-1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
b: Ta có: \(2\sqrt{x-1}-4=0\)
\(\Leftrightarrow x-1=4\)
hay x=5