K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 8 2021

a.

Lấy $x_1\neq x_2$ là $x_1,x_2\in (1;+\infty)$

Xét \(A=\frac{y(x_1)-y(x_2)}{x_1-x_2}\)

\(y(x_1)-y(x_2)=\frac{2x_1^2-x_1-3}{x_1-1}-\frac{2x_2^2-x_2-3}{x_2-1}=2(x_1-x_2)-(\frac{2}{x_1-1}-\frac{2}{x_2-1})\)

\(=2(x_1-x_2)+\frac{2(x_1-x_2)}{(x_1-1)(x_2-1)}=2(x_1-x_2)[1+\frac{1}{(x_1-1)(x_2-1)}]\)

\(\Rightarrow A=2[1+\frac{1}{(x_1-1)(x_2-1)}]>0\) với $x_1,x_2>1$

Vậy hàm số đồng biến trên TXĐ.

c.

Lấy $x_1\neq x_2\in [-3;+\infty)$

Xét $A=\frac{y(x_1)-y(x_2)}{x_1-x_2}$

\(=\frac{(\sqrt{x_1+5}-\sqrt{x_1+3})-(\sqrt{x_2+5}-\sqrt{x_2+3})}{x_1-x_2}\)

\(=\frac{(\sqrt{x_1+5}-\sqrt{x_2+5})-(\sqrt{x_1+3}-\sqrt{x_2+3})}{x_1-x_2}=\frac{1}{\sqrt{x_1+5}+\sqrt{x_2+5}}-\frac{1}{\sqrt{x_1+3}-\sqrt{x_2}+3}< 0\)

Do đó hàm nghịch biến trên TXĐ.

AH
Akai Haruma
Giáo viên
24 tháng 8 2021

d. Lấy $x_1\neq x_2\in (-\infty; 0)$

Xét \(A=\frac{y(x_1)-y(x_2)}{x_1-x_2}=\frac{\sqrt{x_1^2+1}-\sqrt{x_2^2+1}}{x_1-x_2}=\frac{x_1^2-x_2^2}{(\sqrt{x_1^2+1}+\sqrt{x_2^2+1})(x_1-x_2)}\)

\(=\frac{x_1+x_2}{\sqrt{x_1^2+1}+\sqrt{x_2^2+1}}<0\) với mọi $x_1,x_2< 0$

Do đó hàm số nghịch biến trên $(-\infty; 0)$

e. Đặt $\sqrt{x+2}=t$ thì ta cần cm hàm:

$y=\frac{2t^2-5}{t}$ đồng biến trên $(0; \sqrt{2})$

Lấy $t_1\neq t_2\in (0;\sqrt{2})$

Xét \(A=\frac{y(t_1)-y(t_2)}{t_1-t_2}=\frac{2t_1-\frac{5}{t_1}-(2t_2-\frac{5}{t_2})}{t_1-t_2}=\frac{2(t_1-t_2)+\frac{5(t_1-t_2)}{t_1t_2}}{t_1-t_2}=2+\frac{5}{t_1t_2}>0\) với mọi $t\in (0;\sqrt{2})$

Vậy hàm số đồng biến.

 

Bài 9:

\(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}\)

\(=\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{BA}+\overrightarrow{BC}+\overrightarrow{CA}+\overrightarrow{CB}\)

\(=\overrightarrow{0}\)

NV
25 tháng 8 2021

b.

ĐKXĐ: \(x\ge\dfrac{1}{2}\)

Ta có: \(\left\{{}\begin{matrix}\sqrt{2x-1}\ge0\\x\ge\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x-1}+x\ge0+\dfrac{1}{2}=\dfrac{1}{2}\)

\(y_{min}=\dfrac{1}{2}\) khi \(x=\dfrac{1}{2}\)

b.

ĐKXĐ: \(x>0\)

\(y=\dfrac{x}{\sqrt{x}}+\dfrac{2011\sqrt{x}}{\sqrt{x}}+\dfrac{1}{\sqrt{x}}=\sqrt{x}+\dfrac{1}{\sqrt{x}}+2011\ge2\sqrt{\dfrac{\sqrt{x}}{\sqrt{x}}}+2011=2013\)

\(y_{min}=2013\) khi \(\sqrt{x}=\dfrac{1}{\sqrt{x}}\Leftrightarrow x=1\)

NV
29 tháng 7 2021

18.

Do D thuộc trục hoành nên tọa độ có dạng: \(D\left(a;0;0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AD}=\left(a-3;4;0\right)\\\overrightarrow{BC}=\left(4;0;-3\right)\end{matrix}\right.\)

\(AD=BC\Leftrightarrow\left(a-3\right)^2+4^2=4^2+\left(-3\right)^2\)

\(\Rightarrow\left(a-3\right)^2=9\Rightarrow\left[{}\begin{matrix}a=0\\a=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}D\left(0;0;0\right)\\D\left(6;0;0\right)\end{matrix}\right.\)

19.

\(cos\left(\overrightarrow{a};\overrightarrow{b}\right)=\dfrac{2.\left(-1\right)+1.0+0.\left(-2\right)}{\sqrt{2^2+1^2+0^2}.\sqrt{\left(-1\right)^2+0^2+\left(-2\right)^2}}=-\dfrac{2}{5}\)

20.

\(\overrightarrow{OA}=\left(2;2;1\right)\Rightarrow OA=\sqrt{2^2+2^2+1^2}=3\)

21 tháng 8 2021

Hiểu như này:

\(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{b}{1+b}=3-\left(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+b}\right)\le3-\dfrac{9}{1+a+1+b+1+b}=\dfrac{3\left(a+2b\right)}{3+a+2b}\)

21 tháng 8 2021

ghê quá :<

22 tháng 3 2022

tui chịu luôn đó

21 tháng 1 2022

Nhận thất 2 vế của BĐT đều dương nên bình phương lên 

\(\Leftrightarrow3x^2-9x+1>x^2+4x+4\)

\(\Leftrightarrow2x^2-13x-3>0\)

................

Đề có nhầm ko mà nghiệm xấu vậy ạ ?